Error estimation for the implementation of arccot starting from arctan

Johan Vervloet

September 3, 2004

Theorema 1. If the equation

$$
\begin{equation*}
\operatorname{arccot} x=\arctan \frac{1}{x} \tag{1}
\end{equation*}
$$

is used to implement $\operatorname{arccot} x$ for $x>0$, and the relative error of the the division and arctan implementation is bounded by $|\epsilon|<\frac{4-\sqrt{2}}{4}$, then the following holds for the calculated result \tilde{y} :

$$
\begin{equation*}
\tilde{y}=(\operatorname{arccot} x)(1+\delta) \tag{2}
\end{equation*}
$$

where $|\delta|<4|\epsilon|$.
Proof. Instead of calculating

$$
\begin{equation*}
\operatorname{arccot} x=\arctan \frac{1}{x} \tag{3}
\end{equation*}
$$

an implementation will typically return

$$
\begin{equation*}
\tilde{f}=\arctan \left(\frac{1}{x}\left(1+\epsilon_{d}\right)\right)\left(1+\epsilon_{a}\right) \tag{4}
\end{equation*}
$$

Where ϵ_{d} and ϵ_{a} are the relative errors introduced by the machine division and arctan. Both $\left|\epsilon_{d}\right|$ and $\left|\epsilon_{a}\right|$ are bounded by $|\epsilon|$.

We know that ${ }^{1} \arctan (z(1+\varepsilon))$ can be written as

$$
\begin{equation*}
\arctan (z(1+\varepsilon))=\arctan (1+z)\left(1+\delta_{0}\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{0} \leq \max _{|\eta|<|\varepsilon|}\left|\frac{1}{1+z^{2}(1+\eta)^{2}} \frac{z \varepsilon}{\arctan z}\right| \tag{6}
\end{equation*}
$$

Because

$$
\begin{equation*}
\frac{z}{\arctan z}<z+1 \tag{7}
\end{equation*}
$$

[^0]for $z>0$, we have that
\[

$$
\begin{equation*}
\delta_{0} \leq \max _{|\eta|<|\varepsilon|}\left|\frac{z+1}{1+z^{2}(1+\eta)^{2}} \varepsilon\right| \tag{8}
\end{equation*}
$$

\]

We will now try to bound the factor ε is multiplied by:

$$
\begin{equation*}
\frac{z+1}{1+z^{2}(1+\eta)^{2}}<2 \tag{9}
\end{equation*}
$$

To accomplish this, it is sufficient that for all real z

$$
\begin{equation*}
2 z^{2}(1+\eta)^{2}-z+1>0 \tag{10}
\end{equation*}
$$

Since expression (10) describes a concave ${ }^{2}$ parabola, it suffices that it has no zeros, so its discriminant should be strictly negative:

$$
\begin{equation*}
1-8(1+\eta)^{2}<0 \tag{11}
\end{equation*}
$$

The zeros of equation (11) are given by

$$
\begin{equation*}
\frac{ \pm \sqrt{2}-4}{4} \tag{12}
\end{equation*}
$$

If $|\varepsilon|<\frac{4-\sqrt{2}}{4}$ and $|\eta|<|\varepsilon|$, we have that (11) holds. And thus (10) is true as well. So from (9) and (8) we have that $\left|\delta_{0}\right|<|2 \varepsilon|$. Applying (5) on (4) finally leads to

$$
\begin{equation*}
\tilde{f}=\left(\arctan \frac{1}{x}\right)\left(1+\delta_{0}\right)\left(1+\epsilon_{a}\right) \tag{13}
\end{equation*}
$$

with $\left|\delta_{0}\right|<2\left|\epsilon_{d}\right|$.
Because $\left|\epsilon_{d}\right| \leq|\epsilon|$ and $\left|\epsilon_{a}\right| \leq|\epsilon|$, it is not hard to see that equation (13) can be rewritten as

$$
\begin{equation*}
\tilde{f}=\left(\arctan \frac{1}{x}\right)(1+\delta) \tag{14}
\end{equation*}
$$

with $|\delta|<4|\epsilon|$, which completes the proof.

[^1]
[^0]: ${ }^{1}$ See the article on http://www.win.ua.ac.be/~ jvvloet/onderzoek/properr.pdf

[^1]: ${ }^{2}$ Is this the correct translation for 'hol'?

