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Continued fractions (1)
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Continued fractions (2)

Definition 1. A continued fraction s an expression

51
bo +

as
b1 +

as
_|_
b + -+

with all a; # 0. The a; and b; are called the partial numerators
and the partial denominators respectively. The continued
fraction (@ 18 denoted as
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Approximants

Definition 2. The approrimants f, of a continued fraction
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are defined as follows
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Recurrence relations

Let f=0bo+ K2y Z—j, and define

Pi=1 Q1 =0
Py = by Qo =1
P, =b,FP,_1+anPy_2 Qn — ann—l + anQn—Q

for n > 1. The following holds:




Equivalent continued fractions

Definition 3. Two continued fractions f and g are called

equivalent ¢f and only if f; = g; for all 7 € N.
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f and g are equivalent continued fractions.




Equivalence transformations (1)

It f=0bo+ KjZ, Z—j is a continued fraction, and p; # 0 for all

j > 1, then the continued fraction

p1a1 T Dj—1D;Q;
bo + 20
p1b1 + ]:Ig p;b; (20

is equivalent to f.




Equivalence transformations (2)

If b; # 0 for all j, the continued fractions
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are equivalent.

Proof. Use expression (
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Tails of series (1)
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Tails of series (2)
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Tails of continued fractions (1)
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(This can be proven by reductio ad absurdum)
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Tails of continued fractions (2)
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Tails of continued fractions (3)
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Modified approximants

ail a9 as

f=bo+

"y 4 by by
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From continued fraction to series (1)
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From continued fraction to series (2)

Let f =00+ K2 b - be a continued fraction, and let ); be
defined as in (14-16) The following holds:

n

n=> 4y
fa=bo+ )Y (-1) 0,10,

g=1

Proof. This can be proven using induction and (

Definition 4. We call

the Euler-Minding series associated to f = by + K524 b
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From series to continued fraction (1)

. . . . a
Given a series ) -~ ¢j, find a continued fraction {52, 32 such
o J

that
(49)

To obtain this, we define the seqence (C}); of the series’

approximants:
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From series to continued fraction (2)

ajl = Cl — C()
Ci_1— C;
Cj_l — Cj_g

for 5 > 2. Now the following holds:

n_a.
bO"i_Kb_J: n
j=1 "J

a5 —

20



21



Successive substitution

How to create a continued fraction expansion for a

value/function f7

f="bo+ O
b+ fO)

) = 42
by + f(2)

f(O)
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Warning!

n—oo

—V2 # lim <1+

but if we modify the approximants
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Exercises

1. Apply an equivalence transformation to the following

continued fraction expansion of v/2

11
2=14+- =
V2 5. 5. (70)

such that all partial denominators of the transformed

continued fraction equal 1.

. Calculate (the first terms of) the Euler-Minding series of

the continued fraction (70).
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Correspondence

Definition 5. A continued fraction

a;(x)

i
bj(x) (71)

fzbo(ﬂi‘)Jr_f_%

. . . . o0 ) .
1 said to be corresponding to a power series Zj:() c;jx! if for
each n > 0

(72)

matches the first n + 1 terms of the Taylor expansion of f,.
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Method of Viscovatov

For a power series Z;io cjmj , with ¢; # 0 for all 7 > 0, define
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dor = 0 (/43>1)
dlk:Ck (/CZO

dik =dj—10dj—2k+1 —dj—20dj—1k+1 (> 2,k>0)
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The following holds:
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Constructing corresponding continued fractions

using Viscovatov

(Viscovatov)

The continued fraction (

) corresponds to the series (
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Example (1)

2 3 2t

log(1 _ . ot 9
og(l+x)=0+=x s t3 77 (82)

log(1+x)—0:1_§+x_2 3
X 2 3
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Example (2)

which leads to

x
log(1 = —
og(1l + x) O—I—1+
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Example (3)

Taylor expansion

s*

0+ x

1.2, 1.3_ .. .
04+ ST°+ T
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0+« 57+ 3T ST+
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Approximant evaluation

How to calculate the value of an (unmodified) approximant f,

of f=KjZ, 327

Backward evaluation. Define r, =0, and r;_; = for

7=0,...,n—1. Now f,, = by + rg.

b; —|—7“J

Forward evaluation. Remember e.g. the recurrence relations
(14716)).
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A tridiagonal system

Theorem. The nth approximant of the continued fraction

721 % is the first unknown x1, of the tridiagonal system
J

0 )

[

Y
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Illustration

Use Gaussian elimination to transform the system (87

lower triangular matrix:

(210

2n

(730
(o)

2n

m

0

x )
73

\0)
(o))

\0)

(89)

You can prove the theorem in a similar way using induction.
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The other way round

If you use Gaussian elimination to convert the system into an

upper triangular matrix, you will find after backsubstitution:

n

. a ...a.
w1 =Y () (90)

2 2 7
- hi_hy

j=1

a;
hj_l
This leads to the following forward algorithm:

hy = by and hj = bj + for 5 > 2 (91)

a/]_...a/n

h%"'h%_lhn

Tin = T1n-1 — (—1) (92)
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Link with Euler-Minding

Expression (90) is closely related to the Euler-Minding series of
the continued fraction (48]). Sketch of the proof:

e Prove for the sequence (hy), as defined in (91) that

h; = jS for all 7 > 0. ((Qn)n is defined in (14H16)).

e Then Qj_le — h% s h?_lhj
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Function evaluation using continued fractions

The evaluation of F'(z) generally takes three steps

A G>y » F'(2) (93)

A argument reduction

(G a function we can easily calculate using a continued fraction

expansion; usually G = F

P ‘post processing’ (depends on both z and y)
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Truncation error

Since we won’t be able to calculate

G(z) = by + f_% ng)) (94)

we will approximate G(x) by a modified n’th approximant

Sn(w; ZC) = by +

(@) aslo) anl@)  w
bi(z) + ba(x) + -+ +bp(z) + 1

The choice of n can be made
® a priori

e a posteriori
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Error bounding strategy

Approximating G(x) by S, (w;x) introduces an error
Sp(w;x) = G(x) +¢€ (96)

We want to make sure that |¢| is smaller than some upper

bound, g (e.g. € = 27°?). Suppose we can bound & by some

expression F/ which depends on parameters pq, pa, ...

el < E(p1,p2,-- ) (97)
If we choose our parameters p1, pa, ... such that

E(p17p27 ax ) <¢

then indeed
e| <&
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Henrici-Pfluger (HP)

Suppose f = bp + ;2 aTJ is a converging continued fraction

with all a,, > 0. Then for all n > 1 the following holds:

‘f o fn| < |fn _ fn—l‘ (100)
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Determining n a posteriori using HP

> % — 0.78539816 . . . (101)

fn — T | fn = fn-1l
0.21460. .. 1
0.75 0.035398. .. 0.25
0.79166. .. 0.0062685 . .. 0.041666. . .
0.78431. .. 0.0010844 . .. 0.0073529. ..
0.7855855. .. 0.00018742 ... 0.00127186. ..
0.785368536... 3.23097...-10° 0.00021973...
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Interval Sequence Theorem (IST)

Suppose [ = K72, aTJ If we can find sequences (£,), and (r,)n
such that for all n

1. 0<tl, <r, <o

2. (1 + Tn)gn—l < a, < (1 + gn)ﬁz—l

then we can apply the ‘interval sequence theorem’:

= @) < (= )2 T[22 (102)
k=1

1+4, 14+ 7

for w € [€y, 1]
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Sufficient conditions for the IST

In general, we can find suitable ¢,, and r,, if

e the partial numerators are non-decreasing towards a

positive number.
the partial numerators are non-increasing towards zero.

the even partial numerators are non-decreasing towards a
positive number a, and the odd partial numerators are

non-increasing towards a positive number b such that a < b.

the partial numerators are non-decreasing towards zero.

the partial numerators are non-decreasing towards infinity:.
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> % = 0.78539816.. .. (103)

expr. (102)
0.80599...  0.020592... 0.049945 . . .
0.78451...  0.00087954...  0.0022574...
0.78546 . . . 6.7121...-107° 0.00017928...
0.78539.. . 6.4734...-107% 1.7757...-107°
0.7853988... 7.1024...-1077 1.9847...-107
0.7853980... 8.4557...-107% 2.3953...-10°
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Determining n a priori using IST (1)

If (%) and (1:—7;) are decreasing sequences, we can
" /n "/n

write for e = |f — S, (w)]:

(104)

n—H
) for H <n

(105)

(106)
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Determining n a priori using IST (2)

To bound the error by £ (e.g. € < 27°2), it suffices to bound

this expression:

H | | n—H
0 _
) ] 107

k=1 Tk

It follows that

1

n >
log(l—ké

) {log(rﬂ — L) +logrg — log(1 + £g)

H 1 _
— (;log (1+7“k>> —logg+ H| (108)
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Determining n a priori using IST (3)

0o (] 1%2 -
:P( Ll — T = 0.78530816....

error bound realn est. n
101 1
1072
1073
104
1077
107°
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Excercises

:2j+1

1. If [2] <1, then arctan(z) = > ;2 ((—1)’ 577 is a power
series expansion of arctan(z). Calculate the first terms of a

corresponding continued fraction using Viscovatov’s
method.

. If a continued fraction ¢ is constructed from a continued

fraction f using the equivalence transformation (20)), what

is the connection between the tails f(® and ¢(™)?

3. What is the limit of the tails of the continued fraction
(25)7 Hint: The limit of the tails of (26

48



The problem 1+ K¢°

312

Evaluate

00 1 w
A

for different values of w

n
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Periodic continued fractions

Definition 6. A continued fraction f = by + K;24 Z—j 1s called

1-periodic if a,, = A and b, = B for alln > 1.

If n > 1, then a modified n’th approximant of f satisifies

" a. W
b+ K =22 = =by+ T (w 111
0 J'I:(oijfl 0 (w) (111)
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Linear fractional transformations (LFT)
Definition 7. A linear fractional transformation is a real

function of the form

aw + b

113
cw + d (113)

T(w)

with ad — bc # 0.

If we know what happens to ToT o---oT(w), we might be

able to tell more about our case (111), where

(114)

(ie.a=0,b=A,c=1,d=B)

51



Iterations of LFT’s (1)

Suppose 1" is an arbitrary LFT, w € R, and suppose a real

number x exists such that

lim T"(w) = x (115)

n—aoeo

Expression (115) implies that T'(x) = x, because

lim T"(w) = x (116)

T (nli_{go T (w) (117)
(118)

If T" is not the identity function, there are at most 2 fixed
points x such that T'(x) = =.
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Iterations of LFT’s (2)

If T'= Zgig is a LFT with (complex) fixed pointﬂ x and y.

o If v =y then (T"(w)), converges and

lim T"(w) =« for all w € C (119)

n—oo

o If xr £y and

lcx + d| = |cy + d| if c#£0 (120)
la| = |d| ifc=0 (121)

then (1" (w)), diverges for all w € C\ {z,y}.

*we allow oo as fixed point

53



Iterations of LFT’s (3)

o If z # y and

lcx 4+ d| > |cy + d| if c#£0 (122)
la| # |d] ifc=0 (123)
then (1™ (w)),, converges and

lim T"(w) =« for all w € C\ {y} (124)

n—oo
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For the continued fraction

f:1+f%1 (125)
j=1 2

we have that
1

T = — 126
2 4+ w (126)
which has fixed points x = —1 + V2 and y=—1-— V2. Because

a=0,b=1,c=1,d =2, we are in case (122).
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Example (continued)

— = lim T"(w) (127)

n—oo

— 1442 forw#—l—\@ (128)

=2 for w# —1—+v2 (129)
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