An introduction to continued fractions

Johan Vervloet

November 25, 2003

Continued fractions (2)

Definition 1. A continued fraction is an expression

$$b_{0} + \frac{a_{1}}{b_{1} + \frac{a_{2}}{b_{2} + \frac{a_{3}}{b_{3} + \cdots}}}$$
(5)

with all $a_j \neq 0$. The a_j and b_j are called the partial numerators and the partial denominators respectively. The continued fraction (5) is denoted as

$$b_0 + \prod_{j=1}^{\infty} \frac{a_j}{b_j} \text{ or } b_0 + \frac{a_1}{b_1} + \frac{a_2}{b_2} + \frac{a_3}{b_3} + \cdots$$
 (6)

Approximants

Definition 2. The approximants f_n of a continued fraction

$$f = b_0 + \prod_{j=1}^{\infty} \frac{a_j}{b_j} \qquad f = b_0 + \frac{a_1}{b_1} + \frac{a_2}{b_2} + \frac{a_3}{b_3} + \cdots$$
(7)

are defined as follows

$$f_n = b_0 + \prod_{j=1}^n \frac{a_j}{b_j} \qquad f_n = b_0 + \frac{a_1}{b_1} + \dots + \frac{a_n}{b_n}$$
(8)

Recurrence relations

Let
$$f = b_0 + K_{j=1}^{\infty} \frac{a_j}{b_j}$$
, and define
 $P_{-1} = 1$
 $Q_{-1} = 0$
 $Q_{0} = 1$
 $P_0 = b_0$
 $Q_0 = 1$
 $Q_0 = 1$
 $P_n = b_n P_{n-1} + a_n P_{n-2}$
 $Q_n = b_n Q_{n-1} + a_n Q_{n-2}$
 $Q_n = b_n Q_n = b_n Q_n + b_n Q_n$

for $n \ge 1$. The following holds:

$$f_n = \frac{P_n}{Q_n} \tag{17}$$

Equivalent continued fractions

Definition 3. Two continued fractions f and g are called equivalent if and only if $f_j = g_j$ for all $j \in \mathbb{N}$.

Example

$$f = 2 + \frac{2}{2} + \frac{3}{3} + \frac{4}{4} + \frac{5}{5} + \dots = e$$
(18)
$$g = 2 + \frac{2}{2} + \frac{9 \cdot 3}{9 \cdot 3} + \frac{9 \cdot 4}{4} + \frac{5}{5} + \dots = e$$
(19)

f and g are equivalent continued fractions.

Equivalence transformations (1)

If $f = b_0 + K_{j=1}^{\infty} \frac{a_j}{b_j}$ is a continued fraction, and $p_j \neq 0$ for all $j \geq 1$, then the continued fraction

$$b_0 + \frac{p_1 a_1}{p_1 b_1} + \prod_{j=2}^{\infty} \frac{p_{j-1} p_j a_j}{p_j b_j}$$
(20)

is equivalent to f.

Equivalence transformations (2)

If $b_j \neq 0$ for all j, the continued fractions

$$b_0 + \prod_{j=1}^{\infty} \frac{a_j}{b_j} \tag{21}$$

and

$$b_0 + \frac{b_1^{-1}a_1}{1} + \prod_{j=2}^{\infty} \frac{b_{j-1}^{-1}b_j^{-1}a_j}{1}$$
(22)

are equivalent.

Proof. Use expression (20) with $p_j = b_j^{-1}$.

Tails of series (1)

$$e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots \qquad (27)$$

$$= \sum_{j=0}^{\infty} \frac{1}{j!} \qquad (28)$$

$$\lim_{n \to \infty} \sum_{j=n}^{\infty} \frac{1}{j!} = 0 \qquad (29)$$

Tails of series (2)

$$\log 2 = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots \qquad (30)$$

$$= \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} \qquad (31)$$

$$\lim_{n \to \infty} \sum_{j=n}^{\infty} \frac{(-1)^{j+1}}{j} = 0 \qquad (32)$$

Tails of continued fractions (1)

$$e = 2 + \frac{2}{2} + \frac{3}{3} + \frac{4}{4} + \frac{5}{5} + \dots \qquad (33)$$

$$= 2 + \prod_{j=1}^{\infty} \frac{j}{j} \qquad (34)$$

$$\lim_{n \to \infty} \prod_{j=n}^{\infty} \frac{j}{j} \neq 0 \qquad (35)$$
(This can be proven by reductio ad absurdum)

Tails of continued fractions (2)

$$\log 2 = 0 + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{4}{4} + \dots$$

$$= 0 + \frac{1}{1} + \prod_{j=2}^{\infty} \frac{\lfloor \frac{j}{2} \rfloor^2}{j}$$
(36)
(37)

$$\lim_{n \to \infty} \prod_{j=n}^{\infty} \frac{\lfloor \frac{j}{2} \rfloor^2}{j} = \infty \neq 0$$
(38)

Tails of continued fractions (3)

$$f = b_0 + \prod_{j=1}^{\infty} \frac{a_j}{b_j} \qquad f = b_0 + \frac{a_1}{b_1} + \frac{a_2}{b_2} + \frac{a_3}{b_3} + \dots \qquad (39)$$

$$f^{(m)} = \prod_{j=m+1}^{\infty} \frac{a_j}{b_j} \qquad f^{(m)} = \frac{a_{m+1}}{b_{m+1}} + \frac{a_{m+2}}{b_{m+2}} + \dots \qquad (40)$$

$$f^{(m)}_n = \prod_{j=m+1}^{m+n} \frac{a_j}{b_j} \qquad f^{(m)}_n = \frac{a_{m+1}}{b_{m+1}} + \dots + \frac{a_{m+n}}{b_{m+n}} \qquad (41)$$

Modified approximants

$$f = b_0 + \prod_{j=1}^{\infty} \frac{a_j}{b_j} \qquad f = b_0 + \frac{a_1}{b_1} + \frac{a_2}{b_2} + \frac{a_3}{b_3} + \cdots$$
(42)

$$S_n(w) = b_0 + \prod_{j=1}^{n} \frac{a_j}{b_j} + \frac{w}{1} \quad S_n(w) = b_0 + \frac{a_1}{b_1} + \cdots + \frac{a_n}{b_n} + \frac{w}{1}$$
(43)
Note that $S_n(0) = f_n$ and $S_n(f^{(n)}) = f$.

From continued fraction to series (1)

$$f = 2 + \frac{2}{2} + \frac{3}{3} + \frac{4}{4} + \cdots$$
 (44)
 $f_0 = 2 + 1 - \frac{1}{3} + \frac{2}{33} + \cdots$ (45)
 $f = 2 + 1 - \frac{1}{3} + \frac{2}{33} + \cdots$ (46)

From continued fraction to series (2)

Let $f = b_0 + K_{j=0}^{\infty} \frac{a_j}{b_j}$ be a continued fraction, and let Q_i be defined as in (14-16). The following holds:

$$f_n = b_0 + \sum_{j=1}^n (-1)^{j+1} \frac{a_1 \cdots a_j}{Q_{j-1} Q_j}$$
(47)

Proof. This can be proven using induction and (14-16).

Definition 4. We call

$$b_0 + \sum_{j=1}^{\infty} (-1)^{j+1} \frac{a_1 \cdots a_j}{Q_{j-1} Q_j}$$
(48)

the Euler-Minding series associated to $f = b_0 + K_{j=1}^{\infty} \frac{a_j}{b_j}$.

From series to continued fraction (1)

Given a series $\sum_{j=0}^{\infty} c_j$, find a continued fraction $K_{j=1}^{\infty} \frac{a_j}{b_j}$ such that

$$b_0 + \prod_{j=1}^n \frac{a_j}{b_j} = \sum_{j=0}^n c_j \tag{49}$$

To obtain this, we define the sequence $(C_j)_j$ of the series' approximants:

$$C_n = \sum_{j=0}^n c_j \tag{50}$$

From series to continued fraction (2)

Let

$$b_0 = C_0 \tag{51}$$

$$a_1 = C_1 - C_0 \qquad b_1 = 1 \tag{52}$$

$$a_{j} = \frac{C_{j-1} - C_{j}}{C_{j-1} - C_{j-2}} \qquad b_{j} = \frac{C_{j} - C_{j-2}}{C_{j-1} - C_{j-2}} \qquad (53)$$

for $j \ge 2$. Now the following holds:

$$b_0 + \prod_{j=1}^n \frac{a_j}{b_j} = C_n$$
 (54)

Successive substitution

How to create a continued fraction expansion for a value/function f?

$$f = b_0 + f^{(0)} (58)$$

$$f^{(0)} = \frac{a_1}{b_1 + f^{(1)}} \tag{59}$$

$$f^{(1)} = \frac{a_2}{b_2 + f^{(2)}} \tag{60}$$

(61)

. . .

Warning!

$$-\sqrt{2} = 1 + (-\sqrt{2} - 1) \qquad f^{(0)} = -\sqrt{2} - 1 \qquad (66)$$

$$-\sqrt{2} - 1 = \frac{1}{2 + (-\sqrt{2} - 1)} \qquad f^{(1)} = \sqrt{2} - 1 \qquad (67)$$

$$-\sqrt{2} \neq \lim_{n \to \infty} \left(1 + \prod_{j=1}^{n} \frac{1}{2}\right) \qquad (68)$$
but if we modify the approximants

$$-\sqrt{2} = \lim_{n \to \infty} \left(1 + \prod_{j=1}^{n} \frac{1}{2} + \frac{-1 - \sqrt{2}}{1}\right) \qquad (69)$$

Exercises

1. Apply an equivalence transformation to the following continued fraction expansion of $\sqrt{2}$

$$\sqrt{2} = 1 + \frac{1}{2} + \frac{1}{2} + \dots \tag{70}$$

such that all partial denominators of the transformed continued fraction equal 1.

2. Calculate (the first terms of) the Euler-Minding series of the continued fraction (70).

Correspondence

Definition 5. A continued fraction

$$f = b_0(x) + \prod_{j=1}^{\infty} \frac{a_j(x)}{b_j(x)}$$
(71)

is said to be corresponding to a power series $\sum_{j=0}^{\infty} c_j x^j$ if for each $n \ge 0$

$$\sum_{j=0}^{n} c_j x^j \tag{72}$$

matches the first n + 1 terms of the Taylor expansion of f_n .

Method of Viscovatov

For a power series $\sum_{j=0}^{\infty} c_j x^j$, with $c_j \neq 0$ for all $j \ge 0$, define

- (73)
- $d_{00} = 1$ $d_{0k} = 0$ $(k > 1) \quad (74)$

$$d_{1k} = c_k \tag{75}$$

$$d_{jk} = d_{j-1,0}d_{j-2,k+1} - d_{j-2,0}d_{j-1,k+1} \quad (j \ge 2, k \ge 0) \quad (76)$$

The following holds:

$$\lim_{n \to \infty} \sum_{j=0}^{n} c_j x^j = \lim_{n \to \infty} \frac{d_{10}}{1} + \prod_{j=1}^{n} \frac{d_{j+1,0} x}{d_{j0}}$$
(77)

The continued fraction (81) corresponds to the series (78).

Example (1)

$$\log(1+x) = 0 + x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \qquad (82)$$

$$\frac{\log(1+x) - 0}{x} = 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \cdots \qquad (83)$$

$$(d_{jk}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \cdots \\ 1 & -\frac{1}{2} & \frac{1}{3} & -\frac{1}{4} & \cdots \\ \frac{1}{2} & -\frac{1}{3} & \frac{1}{4} & \cdots \\ \frac{1}{12} & -\frac{1}{12} & \cdots \\ \frac{1}{18} & \cdots & \cdots \end{pmatrix} \qquad (84)$$

Example (2)
We get

$$\frac{\log(1+x)}{x} = \frac{1}{1} + \frac{\frac{1}{2}x}{1} + \frac{\frac{1}{12}x}{\frac{1}{2}} + \frac{\frac{1}{18}x}{\frac{1}{12}} + \cdots$$
(85)
which leads to

$$\log(1+x) = 0 + \frac{x}{1} + \frac{\frac{1}{2}x}{1} + \frac{\frac{1}{12}x}{\frac{1}{2}} + \frac{\frac{1}{18}x}{\frac{1}{12}} + \cdots$$
(86)

Approximant evaluation

How to calculate the value of an (unmodified) approximant f_n of $f = K_{j=1}^{\infty} \frac{a_j}{b_j}$?

Backward evaluation. Define $r_n = 0$, and $r_{j-1} = \frac{a_j}{b_j + r_j}$ for $j = 0, \ldots, n-1$. Now $f_n = b_0 + r_0$.

Forward evaluation. Remember e.g. the recurrence relations (14-16).

A tridiagonal system

Theorem. The nth approximant of the continued fraction $K_{j=1}^{\infty} \frac{a_j}{b_j}$ is the first unknown $x_{1,n}$ of the tridiagonal system $\begin{pmatrix} b_{1} & -1 & 0 & \dots & 0 \\ a_{2} & b_{2} & -1 & & \vdots \\ 0 & a_{3} & b_{3} & \ddots & 0 \\ \vdots & & \ddots & \ddots & -1 \\ 0 & \dots & 0 & a_{n} & b_{n} \end{pmatrix} \begin{pmatrix} x_{1,n} \\ \vdots \\ x_{n,n} \end{pmatrix} = \begin{pmatrix} a_{1} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ (87)

Illustration

Use Gaussian elimination to transform the system (87) into a lower triangular matrix:

$$\begin{pmatrix} b_{1} & -1 & 0\\ a_{2} & b_{2} & -1\\ 0 & a_{3} & b_{3} \end{pmatrix} \begin{pmatrix} x_{1,n}\\ x_{2,n}\\ x_{3,n} \end{pmatrix} = \begin{pmatrix} a_{1}\\ 0\\ 0 \end{pmatrix}$$
(88)
$$b_{1} + \frac{a^{2}}{b_{2} + \frac{a_{3}}{b_{3}}} \quad 0 \quad 0\\ a_{2} \qquad b_{2} + \frac{a_{3}}{b_{3}} \quad 0\\ 0 \qquad a_{3} \qquad b_{3} \end{pmatrix} \begin{pmatrix} x_{1,n}\\ x_{2,n}\\ x_{3,n} \end{pmatrix} = \begin{pmatrix} a_{1}\\ 0\\ 0 \end{pmatrix}$$
(89)

You can prove the theorem in a similar way using induction.

The other way round

If you use Gaussian elimination to convert the system into an upper triangular matrix, you will find after backsubstitution:

$$x_{1,n} = \sum_{j=1}^{n} (-1)^{j-1} \frac{a_1 \cdots a_j}{h_1^2 \cdots h_{j-1}^2 h_j}$$
(90)

with

$$h_1 = b_1 \text{ and } h_j = b_j + \frac{a_j}{h_{j-1}} \text{ for } j \ge 2$$
 (91)

This leads to the following forward algorithm:

$$x_{1,n} = x_{1,n-1} - (-1)^n \frac{a_1 \cdots a_n}{h_1^2 \cdots h_{n-1}^2 h_n}$$
(92)

Link with Euler-Minding

Expression (90) is closely related to the Euler-Minding series of the continued fraction (48). Sketch of the proof:

• Prove for the sequence $(h_n)_n$ as defined in (91) that $h_j = \frac{Q_j}{Q_{j-1}}$ for all j > 0. $((Q_n)_n$ is defined in (14–16)).

• Then
$$Q_{j-1}Q_j = h_1^2 \cdots h_{j-1}^2 h_j$$

Function evaluation using continued fractions

The evaluation of F(z) generally takes three steps

$$z \xrightarrow{A} z' \xrightarrow{G} y \xrightarrow{P} F(z)$$
 (93)

- A argument reduction
- G a function we can easily calculate using a continued fraction expansion; usually G = F
- P 'post processing' (depends on both z and y)

Truncation error

Since we won't be able to calculate

$$G(x) = b_0 + \prod_{j=1}^{\infty} \frac{a_j(x)}{b_j(x)}$$
(94)

we will approximate G(x) by a modified n'th approximant

$$S_n(w;x) = b_0 + \frac{a_1(x)}{b_1(x)} + \frac{a_2(x)}{b_2(x)} + \dots + \frac{a_n(x)}{b_n(x)} + \frac{w}{1}$$
(95)

The choice of n can be made

- a priori
- a posteriori

Error bounding strategy

Approximating G(x) by $S_n(w;x)$ introduces an error ε

$$S_n(w;x) = G(x) + \varepsilon \tag{96}$$

We want to make sure that $|\varepsilon|$ is smaller than some upper bound, $\overline{\varepsilon}$ (e.g. $\overline{\varepsilon} = 2^{-52}$). Suppose we can bound ε by some expression E which depends on parameters p_1, p_2, \ldots

$$|\varepsilon| \le E(p_1, p_2, \ldots) \tag{97}$$

If we choose our parameters p_1, p_2, \ldots such that

$$E(p_1, p_2, \ldots) \le \overline{\varepsilon}$$
 (98)

then indeed

$$|\varepsilon| \le \overline{\varepsilon}$$
 (99)

Henrici-Pfluger (HP)

Suppose $f = b_0 + K_{j=1}^{\infty} \frac{a_j}{1}$ is a converging continued fraction with all $a_n > 0$. Then for all $n \ge 1$ the following holds:

$$|f - f_n| \le |f_n - f_{n-1}| \tag{100}$$

Determining n a posteriori using HP							
$f = \frac{1}{1} + \prod_{j=2}^{\infty} \frac{\frac{(j-1)^2}{4(j-1)^2 - 1}}{1} \to \frac{\pi}{4} = 0.78539816\dots$ (101)							
n	f_n	$ f_n - rac{\pi}{4} $	$ f_n - f_{n-1} $				
1	1	0.21460	1				
2	0.75	$0.035398\ldots$	0.25				
3	0.79166	0.0062685	0.041666				
4	0.78431	0.0010844	0.0073529				
5	0.7855855	0.00018742	0.00127186				
6	0.785368536	$3.23097 \dots \cdot 10^{-5}$	0.00021973				

Interval Sequence Theorem (IST)

Suppose $f = \prod_{j=1}^{\infty} \frac{a_j}{1}$. If we can find sequences $(\ell_n)_n$ and $(r_n)_n$ such that for all n

1. $0 < \ell_n < r_n < \infty$

2.
$$(1+r_n)\ell_{n-1} \le a_n \le (1+\ell_n)r_{n-1}$$

then we can apply the 'interval sequence theorem':

$$|f - S_n(w)| \le (r_n - \ell_n) \frac{r_0}{1 + \ell_n} \prod_{k=1}^{n-1} \frac{r_k}{1 + r_k}$$
(102)

for $w \in [\ell_n, r_n]$.

Sufficient conditions for the IST

In general, we can find suitable ℓ_n and r_n if

- the partial numerators are non-decreasing towards a positive number.
- the partial numerators are non-increasing towards zero.
- the even partial numerators are non-decreasing towards a positive number a, and the odd partial numerators are non-increasing towards a positive number b such that $a \leq b$.
- the partial numerators are non-decreasing towards zero.
- the partial numerators are non-decreasing towards infinity.

Example								
$f = \frac{1}{1} + \prod_{j=2}^{\infty} \frac{\frac{(j-1)^2}{4(j-1)^2 - 1}}{1} \to \frac{\pi}{4} = 0.78539816\dots$ (103)								
n	$S_n(w)$	$ f - S_n(w) $	expr. (102)					
1	$0.80599\ldots$	$0.020592\ldots$	$0.049945\ldots$					
2	$0.78451\ldots$	0.00087954	$0.0022574\ldots$					
3	$0.78546\ldots$	$6.7121 \dots \cdot 10^{-5}$	0.00017928					
4	$0.78539\ldots$	$6.4734\cdot 10^{-6}$	$1.7757 \dots \cdot 10^{-5}$					
5	0.7853988	$7.1024\cdot 10^{-7}$	$1.9847\cdot 10^{-6}$					
6	$0.7853980\dots$	$8.4557 \dots \cdot 10^{-8}$	$2.3953\cdot 10^{-7}$					
$rac{n}{1}$ 2 3 4 5 6	$S_n(w)$ 0.80599 0.78451 0.78546 0.78539 0.7853988 0.7853980	$ f - S_n(w) $ 0.020592 0.00087954 6.712110 ⁻⁵ 6.473410 ⁻⁶ 7.102410 ⁻⁷ 8.455710 ⁻⁸	expr. (102) 0.049945 0.0022574 0.00017928 $1.7757 \cdot 10^{-5}$ $1.9847 \cdot 10^{-6}$ $2.3953 \cdot 10^{-7}$					

Determining *n* a priori using IST (1)
If
$$\left(\frac{r_n - \ell_n}{1 + \ell_n}\right)_n$$
 and $\left(\frac{r_n}{1 + r_n}\right)_n$ are decreasing sequences, we can
write for $\varepsilon = |f - S_n(w)|$:
 $\varepsilon \le (r_n - \ell_n) \frac{r_0}{1 + \ell_n} \prod_{k=1}^{n-1} \frac{r_k}{1 + r_k}$ (104)
 $< (r_H - \ell_H) \frac{r_0}{1 + \ell_H} \left(\prod_{k=1}^H \frac{r_k}{1 + r_k}\right) \left(\frac{r_H}{1 + r_H}\right)^{n-H}$ for $H < n$
(105)
 $= (r_H - \ell_H) \frac{r_0}{1 + \ell_H} \left(\prod_{k=1}^H \frac{1}{1 + \frac{1}{r_k}}\right) \left(\frac{1}{1 + \frac{1}{r_H}}\right)^{n-H}$ (106)

Determining n a priori using IST (2) To bound the error by $\overline{\varepsilon}$ (e.g. $\overline{\varepsilon} \leq 2^{-52}$), it suffices to bound this expression:

$$(r_H - \ell_H) \frac{r_0}{1 + \ell_H} \left(\prod_{k=1}^H \frac{1}{1 + \frac{1}{r_k}} \right) \left(\frac{1}{1 + \frac{1}{r_H}} \right)^{n-H} < \overline{\varepsilon} \qquad (107)$$

It follows that

$$n > \frac{1}{\log\left(1 + \frac{1}{r_H}\right)} \left[\log(r_H - \ell_H) + \log r_0 - \log(1 + \ell_H) - \left(\sum_{k=1}^H \log\left(1 + \frac{1}{r_k}\right)\right) - \log \overline{\varepsilon} + H \right]$$
(108)

Determining n a priori using IST (3)						
$f = \frac{1}{1} + \prod_{j=2}^{\infty} \frac{\frac{(j-1)^2}{4(j-1)^2}}{1}$	$\frac{\overline{-1}}{\overline{-1}} \to \frac{\pi}{4} = 0$	0.78539816	(109)			
error bou	nd real n	est. n				
10^{-1}	1	1				
10^{-2}	2	2				
10^{-3}	2	3				
10^{-4}	3	4				
10^{-5}	4	5				
10^{-6}	5	6				

Excercises

- 1. If |z| < 1, then $\arctan(z) = \sum_{j=0}^{\infty} (-1)^j \frac{z^{2j+1}}{2j+1}$ is a power series expansion of $\arctan(z)$. Calculate the first terms of a corresponding continued fraction using Viscovatov's method.
- 2. If a continued fraction g is constructed from a continued fraction f using the equivalence transformation (20), what is the connection between the tails $f^{(n)}$ and $g^{(n)}$?
- 3. What is the limit of the tails of the continued fraction (25)? **Hint:** The limit of the tails of (26) equals $\frac{\sqrt{2}-1}{2}$.

The problem $1 + K_{j=1}^{\infty} \frac{1}{2}$							
Evaluate							
$1 + \prod_{j=1}^{\infty} \frac{1}{2} + \frac{w}{1}$					(110)		
for different values of w							
n	1	2	3	4			
w = 0	1.5	1.4	1.417	1.414			
w = 1	1.333	1.429	1.412	1.415			
w = -1	2	1.333	1.429	1.412			
$w = -1 + \sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$			
$w = -1 - \sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$			
	1						

Periodic continued fractions

Definition 6. A continued fraction $f = b_0 + K_{j=1}^{\infty} \frac{a_j}{b_j}$ is called 1-periodic if $a_n = A$ and $b_n = B$ for all $n \ge 1$.

If $n \ge 1$, then a modified *n*'th approximant of *f* satisifies

$$b_0 + \prod_{j=0}^n \frac{a_j}{b_j} + \frac{w}{1} = b_0 + T^n(w)$$
(111)

where

$$T(w) = \frac{A}{B+w} \text{ and } T^n(w) = \underbrace{T \circ T \circ \cdots \circ T}_{n}(w)$$
(112)

Linear fractional transformations (LFT) Definition 7. A linear fractional transformation is a real function of the form

$$T(w) = \frac{aw+b}{cw+d} \tag{113}$$

with $ad - bc \neq 0$.

If we know what happens to $T \circ T \circ \cdots \circ T(w)$, we might be able to tell more about our case (111), where

$$T(w) = \frac{A}{B+w} \tag{114}$$

(i.e. a = 0, b = A, c = 1, d = B)

Iterations of LFT's (1)

Suppose T is an arbitrary LFT, $w \in \mathbb{R}$, and suppose a real number x exists such that

$$\lim_{n \to \infty} T^n(w) = x \tag{115}$$

Expression (115) implies that T(x) = x, because

$$\lim_{n \to \infty} T^n(w) = x \tag{116}$$

$$T\left(\lim_{n \to \infty} T^n(w)\right) = x \tag{117}$$

$$T(x) = x \tag{118}$$

If T is not the identity function, there are at most 2 fixed points x such that T(x) = x.

Iterations of LFT's (2)

If $T = \frac{aw+b}{cw+d}$ is a LFT with (complex) fixed points^a x and y.

• If x = y then $(T^n(w))_n$ converges and

$$\lim_{n \to \infty} T^n(w) = x \qquad \text{for all } w \in \mathbb{C} \tag{119}$$

• If $x \neq y$ and

$$|cx + d| = |cy + d|$$
 if $c \neq 0$ (120)
 $|a| = |d|$ if $c = 0$ (121)

then $(T^n(w))_n$ diverges for all $w \in \mathbb{C} \setminus \{x, y\}$.

^awe allow ∞ as fixed point

• If
$$x \neq y$$
 and
 $|cx+d| > |cy+d|$ if $c \neq 0$ (122)
 $|a| \neq |d|$ if $c = 0$ (123)
then $(T^n(w))_n$ converges and
 $\lim_{n \to \infty} T^n(w) = x$ for all $w \in \mathbb{C} \setminus \{y\}$ (124)

Example
For the continued fraction
$$f = 1 + \prod_{j=1}^{\infty} \frac{1}{2}$$
(125)
we have that
$$T = \frac{1}{2+w}$$
(126)
which has fixed points $x = -1 + \sqrt{2}$ and $y = -1 - \sqrt{2}$. Because
 $a = 0, b = 1, c = 1, d = 2$, we are in case (122).

Example (continued)

$$\lim_{n \to \infty} \prod_{j=1}^{n} \frac{1}{2} + \frac{w}{1} = \lim_{n \to \infty} T^{n}(w) \qquad (127)$$

$$= -1 + \sqrt{2} \quad \text{for } w \neq -1 - \sqrt{2} \quad (128)$$

$$1 + \lim_{n \to \infty} \prod_{j=1}^{n} \frac{1}{2} + \frac{w}{1} = \sqrt{2} \qquad \text{for } w \neq -1 - \sqrt{2} \quad (129)$$