An introduction to continued fractions

Johan Vervloet

November 25, 2003

Continued fractions (1)

$$
\begin{align*}
e & =\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\ldots=\sum_{j=0}^{\infty} \frac{1}{j!} \tag{1}\\
e & =2+\frac{2}{2+\frac{3}{3+\frac{4}{4+\ldots}}} \tag{2}\\
& =2+\mathrm{K}_{j=1}^{\infty} \frac{j}{j} \tag{3}\\
& =2+\frac{2}{2}+\frac{3}{3}+\frac{4}{4}+\cdots \tag{4}
\end{align*}
$$

Continued fractions (2)

Definition 1. A continued fraction is an expression

$$
\begin{equation*}
b_{0}+\frac{a_{1}}{b_{1}+\frac{a_{2}}{b_{2}+\frac{a_{3}}{b_{3}+\cdots}}} \tag{5}
\end{equation*}
$$

with all $a_{j} \neq 0$. The a_{j} and b_{j} are called the partial numerators and the partial denominators respectively. The continued fraction (5) is denoted as

$$
\begin{equation*}
b_{0}+{\underset{j}{j=1}}_{\infty}^{a_{j}} \text { or } b_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\cdots \tag{6}
\end{equation*}
$$

Approximants

Definition 2. The approximants f_{n} of a continued fraction

$$
\begin{equation*}
f=b_{0}+\varliminf_{j=1}^{\infty} \frac{a_{j}}{b_{j}} \quad f=b_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\cdots \tag{7}
\end{equation*}
$$

are defined as follows

$$
\begin{equation*}
f_{n}=b_{0}+K_{j=1}^{n} \frac{a_{j}}{b_{j}} \quad f_{n}=b_{0}+\frac{a_{1}}{b_{1}}+\cdots+\frac{a_{n}}{b_{n}} \tag{8}
\end{equation*}
$$

Examples

$$
\begin{align*}
f & =2+\frac{2}{2}+\frac{3}{3}+\frac{4}{4}+\cdots & f & =e \tag{9}\\
f_{0} & =2 & f_{0} & =2 \tag{10}\\
f_{1} & =2+\frac{2}{2} & f_{1} & =3 \\
f_{2} & =2+\frac{2}{2}+\frac{3}{3} & f_{2} & =\frac{8}{3}=2.666 \ldots \tag{11}\\
f_{3} & =2+\frac{2}{2}+\frac{3}{3}+\frac{4}{4} & f_{3} & =\frac{30}{11}=2.718 \ldots \tag{12}
\end{align*}
$$

Recurrence relations

Let $f=b_{0}+\mathrm{K}_{j=1}^{\infty} \frac{a_{j}}{b_{j}}$, and define

$$
\begin{align*}
P_{-1} & =1 & Q_{-1} & =0 \tag{14}\\
P_{0} & =b_{0} & Q_{0} & =1 \\
P_{n} & =b_{n} P_{n-1}+a_{n} P_{n-2} & Q_{n} & =b_{n} Q_{n-1}+a_{n} Q_{n-2} \tag{15}
\end{align*}
$$

for $n \geq 1$. The following holds:

$$
\begin{equation*}
f_{n}=\frac{P_{n}}{Q_{n}} \tag{17}
\end{equation*}
$$

Equivalent continued fractions

Definition 3. Two continued fractions f and g are called equivalent if and only if $f_{j}=g_{j}$ for all $j \in \mathbb{N}$.

Example

$$
\begin{array}{ll}
f=2+\frac{2}{2}+\frac{3}{3}+\frac{4}{4}+\frac{5}{5}+\cdots & =e \\
g=2+\frac{2}{2}+\frac{9 \cdot 3}{9 \cdot 3}+\frac{9 \cdot 4}{4}+\overline{5}+\cdots & =e \tag{19}
\end{array}
$$

f and g are equivalent continued fractions.

Equivalence transformations (1)

If $f=b_{0}+\mathrm{K}_{j=1}^{\infty} \frac{a_{j}}{b_{j}}$ is a continued fraction, and $p_{j} \neq 0$ for all $j \geq 1$, then the continued fraction

$$
\begin{equation*}
b_{0}+\frac{p_{1} a_{1}}{p_{1} b_{1}}+\varliminf_{j=2}^{\infty} \frac{p_{j-1} p_{j} a_{j}}{p_{j} b_{j}} \tag{20}
\end{equation*}
$$

is equivalent to f.

Equivalence transformations (2)

If $b_{j} \neq 0$ for all j, the continued fractions

$$
\begin{equation*}
b_{0}+\bigvee_{j=1}^{\infty} \frac{a_{j}}{b_{j}} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{0}+\frac{b_{1}^{-1} a_{1}}{1}+\varliminf_{j=2}^{\infty} \frac{b_{j-1}^{-1} b_{j}^{-1} a_{j}}{1} \tag{22}
\end{equation*}
$$

are equivalent.
Proof. Use expression 20 with $p_{j}=b_{j}^{-1}$.

Examples

$$
\begin{align*}
e & =2+\frac{2}{2}+\frac{3}{3}+\frac{4}{4}+\cdots \tag{23}\\
& =2+\frac{1}{1}+\frac{\frac{1}{2}}{1}+\frac{\frac{1}{3}}{1}+\cdots \tag{24}\\
\log 2 & =0+\frac{1}{1}+\frac{1^{2}}{2}+\frac{1^{2}}{3}+\frac{2^{2}}{4}+\frac{2^{2}}{5}+\frac{3^{2}}{6}+\cdots \tag{25}\\
& =0+\frac{1}{1}+\frac{\frac{1}{2}}{1}+\frac{\frac{1}{6}}{1}+\frac{\frac{1}{3}}{1}+\frac{\frac{3}{10}}{1}+\cdots \tag{26}
\end{align*}
$$

Tails of series (1)

$$
\begin{align*}
e & =\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots \tag{27}\\
& =\sum_{j=0}^{\infty} \frac{1}{j!} \tag{28}
\end{align*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{j=n}^{\infty} \frac{1}{j!}=0 \tag{29}
\end{equation*}
$$

Tails of series (2)

$$
\begin{align*}
\log 2= & \frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots \tag{30}\\
= & \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} \tag{31}\\
& \lim _{n \rightarrow \infty} \sum_{j=n}^{\infty} \frac{(-1)^{j+1}}{j}=0 \tag{32}
\end{align*}
$$

Tails of continued fractions (1)

$$
\begin{align*}
e & =2+\frac{2}{2}+\frac{3}{3}+\frac{4}{4}+\frac{5}{5}+\cdots \tag{33}\\
& =2+\prod_{j=1}^{\infty} \frac{j}{j} \tag{34}\\
& \lim _{n \rightarrow \infty} \prod_{j=n}^{\infty} \frac{j}{j} \neq 0 \tag{35}
\end{align*}
$$

(This can be proven by reductio ad absurdum)

Tails of continued fractions (2)

$$
\begin{align*}
\log 2= & 0+\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{4}{4}+\cdots \tag{36}\\
= & 0+\frac{1}{1}+K_{j=2}^{\infty} \frac{\left\lfloor\frac{j}{2}\right\rfloor^{2}}{j} \tag{37}\\
& \lim _{n \rightarrow \infty} K_{j=n}^{\infty} \frac{\left\lfloor\frac{j}{2}\right\rfloor^{2}}{j}=\infty \neq 0 \tag{38}
\end{align*}
$$

Tails of continued fractions (3)

$$
\begin{align*}
& f=b_{0}+\bigvee_{j=1}^{\infty} \frac{a_{j}}{b_{j}} \tag{39}\\
& f=b_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\cdots \tag{40}\\
& f^{(m)}=\bigvee_{j=m+1}^{\infty} \frac{a_{j}}{b_{j}} \tag{41}\\
& f_{n}^{(m)}=f_{j=m+1}^{m+n} \\
& K_{j}=\frac{a_{m+1}}{b_{m+1}}+\frac{a_{m+2}}{b_{j}} \\
& b_{m+2}
\end{align*} f_{n}^{(m)}=\frac{a_{m+1}}{b_{m+1}}+\cdots+\frac{a_{m+n}}{b_{m+n}} .
$$

Modified approximants

$$
\begin{align*}
& f=b_{0}+{\underset{K}{K}}_{\infty}^{\infty} \frac{a_{j}}{b_{j}} \tag{42}\\
& f=b_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{3}}{b_{3}}+\cdots \\
& S_{n}(w)=b_{0}+\prod_{j=1}^{n} \frac{a_{j}}{b_{j}}+\frac{w}{1} \quad S_{n}(w)=b_{0}+\frac{a_{1}}{b_{1}}+\cdots+\frac{a_{n}}{b_{n}}+\frac{w}{1} \tag{43}
\end{align*}
$$

Note that $S_{n}(0)=f_{n}$ and $S_{n}\left(f^{(n)}\right)=f$.

From continued fraction to series (1)

$$
\begin{align*}
& f=2 \quad+\frac{2}{2}+\frac{3}{3}+\frac{4}{4} \quad+\cdots \tag{44}\\
& f_{0}=2 \quad f_{1}=3 \quad f_{2}=\frac{8}{3} \quad f_{3}=\frac{30}{11} \tag{45}\\
& f=2 \quad+1 \quad-\frac{1}{3} \quad+\frac{2}{33} \quad+\cdots \tag{46}
\end{align*}
$$

From continued fraction to series (2)

Let $f=b_{0}+\mathrm{K}_{j=0}^{\infty} \frac{a_{j}}{b_{j}}$ be a continued fraction, and let Q_{i} be defined as in (14-16). The following holds:

$$
\begin{equation*}
f_{n}=b_{0}+\sum_{j=1}^{n}(-1)^{j+1} \frac{a_{1} \cdots a_{j}}{Q_{j-1} Q_{j}} \tag{47}
\end{equation*}
$$

Proof. This can be proven using induction and (14-16).
Definition 4. We call

$$
\begin{equation*}
b_{0}+\sum_{j=1}^{\infty}(-1)^{j+1} \frac{a_{1} \cdots a_{j}}{Q_{j-1} Q_{j}} \tag{48}
\end{equation*}
$$

the Euler-Minding series associated to $f=b_{0}+\mathrm{K}_{j=1}^{\infty} \frac{a_{j}}{b_{j}}$.

From series to continued fraction (1)

Given a series $\sum_{j=0}^{\infty} c_{j}$, find a continued fraction $\mathrm{K}_{j=1}^{\infty} \frac{a_{j}}{b_{j}}$ such that

$$
\begin{equation*}
b_{0}+\mathrm{K}_{j=1}^{n} \frac{a_{j}}{b_{j}}=\sum_{j=0}^{n} c_{j} \tag{49}
\end{equation*}
$$

To obtain this, we define the seqence $\left(C_{j}\right)_{j}$ of the series' approximants:

$$
\begin{equation*}
C_{n}=\sum_{j=0}^{n} c_{j} \tag{50}
\end{equation*}
$$

From series to continued fraction (2)

Let

$$
\begin{array}{ll}
& b_{0}=C_{0} \\
a_{1}=C_{1}-C_{0} & b_{1}=1 \\
a_{j}=\frac{C_{j-1}-C_{j}}{C_{j-1}-C_{j-2}} & b_{j}=\frac{C_{j}-C_{j-2}}{C_{j-1}-C_{j-2}}
\end{array}
$$

for $j \geq 2$. Now the following holds:

$$
\begin{equation*}
b_{0}+\prod_{j=1}^{n} \frac{a_{j}}{b_{j}}=C_{n} \tag{54}
\end{equation*}
$$

Example

$$
\begin{array}{ccccc}
\frac{\pi}{4}=1 & -\frac{1}{3} & +\frac{1}{5} & -\frac{1}{7} & +\cdots \\
C_{0}=1 & C_{1}=\frac{2}{3} & C_{2}=\frac{13}{15} & C_{3}=\frac{76}{105} & \\
f=1 & -\frac{\frac{1}{3}}{1} & +\frac{\frac{3}{2}}{5} & +\frac{\frac{5}{2}}{7} & +\cdots \tag{57}
\end{array}
$$

Successive substitution

How to create a continued fraction expansion for a value/function f ?

$$
\begin{align*}
f & =b_{0}+f^{(0)} \tag{58}\\
f^{(0)} & =\frac{a_{1}}{b_{1}+f^{(1)}} \tag{59}\\
f^{(1)} & =\frac{a_{2}}{b_{2}+f^{(2)}} \tag{60}
\end{align*}
$$

Example

$$
\begin{array}{cl}
\sqrt{2}=1+(\sqrt{2}-1) & f^{(0)} \\
=\sqrt{2}-1 \\
\sqrt{2}-1=\frac{1}{2+(\sqrt{2}-1)} & f^{(1)}
\end{array}=\sqrt{2}-1 .
$$

Warning!

$$
\begin{align*}
&-\sqrt{2}=1+(-\sqrt{2}-1) f^{(0)} \tag{66}\\
&=-\sqrt{2}-1 \tag{67}\\
&-\sqrt{2}-1=\frac{1}{2+(-\sqrt{2}-1)} \quad f^{(1)}=\sqrt{2}-1 \tag{68}\\
&-\sqrt{2} \neq \lim _{n \rightarrow \infty}\left(1+\mathrm{K}_{j=1}^{n} \frac{1}{2}\right)
\end{align*}
$$

but if we modify the approximants

$$
\begin{equation*}
-\sqrt{2}=\lim _{n \rightarrow \infty}\left(1+K_{j=1}^{n} \frac{1}{2}+\frac{-1-\sqrt{2}}{1}\right) \tag{69}
\end{equation*}
$$

Exercises

1. Apply an equivalence transformation to the following continued fraction expansion of $\sqrt{2}$

$$
\begin{equation*}
\sqrt{2}=1+\frac{1}{2}+\frac{1}{2}+\cdots \tag{70}
\end{equation*}
$$

such that all partial denominators of the transformed continued fraction equal 1.
2. Calculate (the first terms of) the Euler-Minding series of the continued fraction (70).

Correspondence

Definition 5. A continued fraction

$$
\begin{equation*}
f=b_{0}(x)+\check{K}_{j=1}^{\infty} \frac{a_{j}(x)}{b_{j}(x)} \tag{71}
\end{equation*}
$$

is said to be corresponding to a power series $\sum_{j=0}^{\infty} c_{j} x^{j}$ if for each $n \geq 0$

$$
\begin{equation*}
\sum_{j=0}^{n} c_{j} x^{j} \tag{72}
\end{equation*}
$$

matches the first $n+1$ terms of the Taylor expansion of f_{n}.

Method of Viscovatov

For a power series $\sum_{j=0}^{\infty} c_{j} x^{j}$, with $c_{j} \neq 0$ for all $j \geq 0$, define

$$
\begin{array}{rlr}
d_{00}=1 & \\
d_{0 k}=0 & (k>1) \\
d_{1 k}=c_{k} & (k \geq 0) \\
d_{j k}=d_{j-1,0} d_{j-2, k+1}-d_{j-2,0} d_{j-1, k+1} & (j \geq 2, k \geq 0)
\end{array}
$$

The following holds:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{j=0}^{n} c_{j} x^{j}=\lim _{n \rightarrow \infty} \frac{d_{10}}{1}+K_{j=1}^{n} \frac{d_{j+1,0} x}{d_{j 0}} \tag{77}
\end{equation*}
$$

Constructing corresponding continued fractions using Viscovatov

$$
\begin{array}{rlr}
f(x) & =\sum_{j=0}^{\infty} c_{j} x^{j} & c_{1} \neq 0 \\
\frac{f(x)-c_{0}}{x} & =\sum_{j=0}^{\infty} c_{j+1} x^{j} & \\
& =\frac{d_{10}}{1}+K_{j=1}^{\infty} \frac{d_{j+1,0} x}{d_{j 0}} & \text { (Viscovatov) } \\
f(x) & =c_{0}+\frac{d_{10} x}{1}+\prod_{j=2}^{\infty} \frac{d_{j 0} x}{d_{j-1,0}} &
\end{array}
$$

The continued fraction (81) corresponds to the series (78).

Example (1)

$$
\begin{gather*}
\log (1+x)=0+x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \tag{82}\\
\frac{\log (1+x)-0}{x}=1-\frac{x}{2}+\frac{x^{2}}{3}-\frac{x^{3}}{4}+\cdots \tag{83}\\
\left(d_{j k}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \ldots \\
1 & -\frac{1}{2} & \frac{1}{3} & -\frac{1}{4} & \ldots \ldots \\
\frac{1}{2} & -\frac{1}{3} & \frac{1}{4} & \ldots \ldots \ldots \ldots \\
\frac{1}{12} & -\frac{1}{12} & \ldots \ldots \ldots \ldots \ldots \\
\frac{1}{18} & \ldots \ldots \ldots \ldots \ldots \ldots
\end{array}\right) \tag{84}
\end{gather*}
$$

Example (2)

We get

$$
\begin{equation*}
\frac{\log (1+x)}{x}=\frac{1}{1}+\frac{\frac{1}{2} x}{1}+\frac{\frac{1}{12} x}{\frac{1}{2}}+\frac{\frac{1}{18} x}{\frac{1}{12}}+\cdots \tag{85}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
\log (1+x)=0+\frac{x}{1}+\frac{\frac{1}{2} x}{1}+\frac{\frac{1}{12} x}{\frac{1}{2}}+\frac{\frac{1}{18} x}{\frac{1}{12}}+\cdots \tag{86}
\end{equation*}
$$

Example (3)

n	f_{n}	Taylor expansion
1	$\frac{x}{1}$	$0+x$
2	$\frac{x}{1}+\frac{\frac{1}{2} x}{1}$	$0+x-\frac{1}{2} x^{2}+\frac{1}{4} x^{3}-\cdots$
3	$\frac{x}{1}+\frac{\frac{1}{2} x}{1}+\frac{\frac{1}{12} x}{\frac{1}{2}}$	$0+x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{2}{9} x^{4}+\cdots$

Approximant evaluation

How to calculate the value of an (unmodified) approximant f_{n} of $f=\mathrm{K}_{j=1}^{\infty} \frac{a_{j}}{b_{j}}$?
Backward evaluation. Define $r_{n}=0$, and $r_{j-1}=\frac{a_{j}}{b_{j}+r_{j}}$ for

$$
j=0, \ldots, n-1 . \text { Now } f_{n}=b_{0}+r_{0} .
$$

Forward evaluation. Remember e.g. the recurrence relations (14-16).

A tridiagonal system

Theorem. The nth approximant of the continued fraction $\mathrm{K}_{j=1}^{\infty} \frac{a_{j}}{b_{j}}$ is the first unknown $x_{1, n}$ of the tridiagonal system

$$
\left(\begin{array}{ccccc}
b_{1} & -1 & 0 & \ldots & 0 \tag{87}\\
a_{2} & b_{2} & -1 & & \vdots \\
0 & a_{3} & b_{3} & \ddots & 0 \\
\vdots & & \ddots & \ddots & -1 \\
0 & \ldots & 0 & a_{n} & b_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1, n} \\
\vdots \\
x_{n, n}
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Illustration

Use Gaussian elimination to transform the system (87) into a lower triangular matrix:

$$
\begin{align*}
\left(\begin{array}{ccc}
b_{1} & -1 & 0 \\
a_{2} & b_{2} & -1 \\
0 & a_{3} & b_{3}
\end{array}\right)\left(\begin{array}{l}
x_{1, n} \\
x_{2, n} \\
x_{3, n}
\end{array}\right) & =\left(\begin{array}{c}
a_{1} \\
0 \\
0
\end{array}\right) \tag{88}\\
\left(\begin{array}{ccc}
b_{1}+\frac{a 2}{b_{2}+\frac{a_{3}}{b_{3}}} & 0 & 0 \\
a_{2} & b_{2}+\frac{a_{3}}{b_{3}} & 0 \\
0 & a_{3} & b_{3}
\end{array}\right)\left(\begin{array}{c}
x_{1, n} \\
x_{2, n} \\
x_{3, n}
\end{array}\right) & =\left(\begin{array}{c}
a_{1} \\
0 \\
0
\end{array}\right) \tag{89}
\end{align*}
$$

You can prove the theorem in a similar way using induction.

The other way round

If you use Gaussian elimination to convert the system into an upper triangular matrix, you will find after backsubstitution:

$$
\begin{equation*}
x_{1, n}=\sum_{j=1}^{n}(-1)^{j-1} \frac{a_{1} \cdots a_{j}}{h_{1}^{2} \cdots h_{j-1}^{2} h_{j}} \tag{90}
\end{equation*}
$$

with

$$
\begin{equation*}
h_{1}=b_{1} \text { and } h_{j}=b_{j}+\frac{a_{j}}{h_{j-1}} \text { for } j \geq 2 \tag{91}
\end{equation*}
$$

This leads to the following forward algorithm:

$$
\begin{equation*}
x_{1, n}=x_{1, n-1}-(-1)^{n} \frac{a_{1} \cdots a_{n}}{h_{1}^{2} \cdots h_{n-1}^{2} h_{n}} \tag{92}
\end{equation*}
$$

Link with Euler-Minding

Expression (90) is closely related to the Euler-Minding series of the continued fraction (48). Sketch of the proof:

- Prove for the sequence $\left(h_{n}\right)_{n}$ as defined in (91) that $h_{j}=\frac{Q_{j}}{Q_{j-1}}$ for all $j>0 .\left(\left(Q_{n}\right)_{n}\right.$ is defined in 14-16) $)$.
- Then $Q_{j-1} Q_{j}=h_{1}^{2} \cdots h_{j-1}^{2} h_{j}$

Function evaluation using continued fractions

The evaluation of $F(z)$ generally takes three steps

$$
\begin{equation*}
z \xrightarrow{A} z^{\prime} \xrightarrow{G} y \xrightarrow{P} F(z) \tag{93}
\end{equation*}
$$

A argument reduction
G a function we can easily calculate using a continued fraction expansion; usually $G=F$
P 'post processing' (depends on both z and y)

Truncation error

Since we won't be able to calculate

$$
\begin{equation*}
G(x)=b_{0}+\varliminf_{j=1}^{\infty} \frac{a_{j}(x)}{b_{j}(x)} \tag{94}
\end{equation*}
$$

we will approximate $G(x)$ by a modified n 'th approximant

$$
\begin{equation*}
S_{n}(w ; x)=b_{0}+\frac{a_{1}(x)}{b_{1}(x)}+\frac{a_{2}(x)}{b_{2}(x)}+\cdots+\frac{a_{n}(x)}{b_{n}(x)}+\frac{w}{1} \tag{95}
\end{equation*}
$$

The choice of n can be made

- a priori
- a posteriori

Error bounding strategy

Approximating $G(x)$ by $S_{n}(w ; x)$ introduces an error ε

$$
\begin{equation*}
S_{n}(w ; x)=G(x)+\varepsilon \tag{96}
\end{equation*}
$$

We want to make sure that $|\varepsilon|$ is smaller than some upper bound, $\bar{\varepsilon}$ (e.g. $\bar{\varepsilon}=2^{-52}$). Suppose we can bound ε by some expression E which depends on parameters p_{1}, p_{2}, \ldots

$$
\begin{equation*}
|\varepsilon| \leq E\left(p_{1}, p_{2}, \ldots\right) \tag{97}
\end{equation*}
$$

If we choose our parameters p_{1}, p_{2}, \ldots such that

$$
\begin{equation*}
E\left(p_{1}, p_{2}, \ldots\right) \leq \bar{\varepsilon} \tag{98}
\end{equation*}
$$

then indeed

$$
\begin{equation*}
|\varepsilon| \leq \bar{\varepsilon} \tag{99}
\end{equation*}
$$

Henrici-Pfluger (HP)

Suppose $f=b_{0}+\mathrm{K}_{j=1}^{\infty} \frac{a_{j}}{1}$ is a converging continued fraction with all $a_{n}>0$. Then for all $n \geq 1$ the following holds:

$$
\begin{equation*}
\left|f-f_{n}\right| \leq\left|f_{n}-f_{n-1}\right| \tag{100}
\end{equation*}
$$

Determining n a posteriori using HP

	$f=\frac{1}{1}+{\underset{j=2}{K}}_{K_{j=2}}^{\frac{(j-1)^{2}}{4(j-1)^{2}-1}} \rightarrow \frac{\pi}{4}=0.78539816 \ldots$		
n	f_{n}	$\left\|f_{n}-\frac{\pi}{4}\right\|$	$\left\|f_{n}-f_{n-1}\right\|$
1	1	$0.21460 \ldots$	1
2	0.75	$0.035398 \ldots$	0.25
3	$0.79166 \ldots$	$0.0062685 \ldots$	$0.041666 \ldots$
4	$0.78431 \ldots$	$0.0010844 \ldots$	$0.0073529 \ldots$
5	$0.7855855 \ldots$	$0.00018742 \ldots$	$0.00127186 \ldots$
6	$0.785368536 \ldots$	$3.23097 \ldots \cdot 10^{-5}$	$0.00021973 \ldots$

Interval Sequence Theorem (IST)

Suppose $f=\mathrm{K}_{j=1}^{\infty} \frac{a_{j}}{1}$. If we can find sequences $\left(\ell_{n}\right)_{n}$ and $\left(r_{n}\right)_{n}$ such that for all n

1. $0<\ell_{n}<r_{n}<\infty$
2. $\left(1+r_{n}\right) \ell_{n-1} \leq a_{n} \leq\left(1+\ell_{n}\right) r_{n-1}$
then we can apply the 'interval sequence theorem':

$$
\begin{equation*}
\left|f-S_{n}(w)\right| \leq\left(r_{n}-\ell_{n}\right) \frac{r_{0}}{1+\ell_{n}} \prod_{k=1}^{n-1} \frac{r_{k}}{1+r_{k}} \tag{102}
\end{equation*}
$$

for $w \in\left[\ell_{n}, r_{n}\right]$.

Sufficient conditions for the IST

In general, we can find suitable ℓ_{n} and r_{n} if

- the partial numerators are non-decreasing towards a positive number.
- the partial numerators are non-increasing towards zero.
- the even partial numerators are non-decreasing towards a positive number a, and the odd partial numerators are non-increasing towards a positive number b such that $a \leq b$.
- the partial numerators are non-decreasing towards zero.
- the partial numerators are non-decreasing towards infinity.

Example

$f=\frac{1}{1}+\prod_{j=2}^{\infty} \frac{\frac{(j-1)^{2}}{4(j-1)^{2}-1}}{1} \rightarrow \frac{\pi}{4}=0.78539816$			
n	$S_{n}(w)$	$\left\|f-S_{n}(w)\right\|$	expr. (102)
1	0.80599	0.020592	0.049945
2	0.78451	0.00087954	0.0022574
3	0.78546	$6.7121 \ldots \cdot 10^{-5}$	0.00017928
4	0.78539	$6.4734 \ldots \cdot 10^{-6}$	$1.7757 \ldots \cdot 10^{-5}$
5	0.7853988	$7.1024 \ldots \cdot 10^{-7}$	$1.9847 \ldots \cdot 10^{-6}$
6	0.7853980 .	$8.4557 \ldots \cdot 10^{-8}$	$2.3953 \ldots \cdot 10^{-7}$

Determining n a priori using IST (1)

If $\left(\frac{r_{n}-\ell_{n}}{1+\ell_{n}}\right)_{n}$ and $\left(\frac{r_{n}}{1+r_{n}}\right)_{n}$ are decreasing sequences, we can write for $\varepsilon=\left|f-S_{n}(w)\right|$:
$\varepsilon \leq\left(r_{n}-\ell_{n}\right) \frac{r_{0}}{1+\ell_{n}} \prod_{k=1}^{n-1} \frac{r_{k}}{1+r_{k}}$
$<\left(r_{H}-\ell_{H}\right) \frac{r_{0}}{1+\ell_{H}}\left(\prod_{k=1}^{H} \frac{r_{k}}{1+r_{k}}\right)\left(\frac{r_{H}}{1+r_{H}}\right)^{n-H} \quad$ for $H<n$
$=\left(r_{H}-\ell_{H}\right) \frac{r_{0}}{1+\ell_{H}}\left(\prod_{k=1}^{H} \frac{1}{1+\frac{1}{r_{k}}}\right)\left(\frac{1}{1+\frac{1}{r_{H}}}\right)^{n-H}$

Determining n a priori using IST (2)

To bound the error by $\bar{\varepsilon}$ (e.g. $\bar{\varepsilon} \leq 2^{-52}$), it suffices to bound this expression:

$$
\begin{equation*}
\left(r_{H}-\ell_{H}\right) \frac{r_{0}}{1+\ell_{H}}\left(\prod_{k=1}^{H} \frac{1}{1+\frac{1}{r_{k}}}\right)\left(\frac{1}{1+\frac{1}{r_{H}}}\right)^{n-H}<\bar{\varepsilon} \tag{107}
\end{equation*}
$$

It follows that

$$
\begin{align*}
n>\frac{1}{\log \left(1+\frac{1}{r_{H}}\right)} & {\left[\log \left(r_{H}-\ell_{H}\right)+\log r_{0}-\log \left(1+\ell_{H}\right)\right.} \\
& \left.-\left(\sum_{k=1}^{H} \log \left(1+\frac{1}{r_{k}}\right)\right)-\log \bar{\varepsilon}+H\right] \tag{108}
\end{align*}
$$

Determining n a priori using IST (3)

Excercises

1. If $|z|<1$, then $\arctan (z)=\sum_{j=0}^{\infty}(-1)^{j} \frac{z^{2 j+1}}{2 j+1}$ is a power series expansion of $\arctan (z)$. Calculate the first terms of a corresponding continued fraction using Viscovatov's method.
2. If a continued fraction g is constructed from a continued fraction f using the equivalence transformation $(\overline{20})$, what is the connection between the tails $f^{(n)}$ and $g^{(n)}$?
3. What is the limit of the tails of the continued fraction (25)? Hint: The limit of the tails of 26 equals $\frac{\sqrt{2}-1}{2}$.

The problem $1+\mathrm{K}_{j=1}^{\infty} \frac{1}{2}$

Evaluate

$$
\begin{equation*}
1+{\underset{j=1}{\infty} \frac{1}{2}+\frac{w}{1}, ~}^{2} \tag{110}
\end{equation*}
$$

for different values of w

n	1	2	3	4
$w=0$	1.5	1.4	1.417	1.414
$w=1$	1.333	1.429	1.412	1.415
$w=-1$	2	1.333	1.429	1.412
$w=-1+\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$
$w=-1-\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$

Periodic continued fractions

Definition 6. A continued fraction $f=b_{0}+\mathrm{K}_{j=1}^{\infty} \frac{a_{j}}{b_{j}}$ is called 1-periodic if $a_{n}=A$ and $b_{n}=B$ for all $n \geq 1$.

If $n \geq 1$, then a modified n 'th approximant of f satisifies

$$
\begin{equation*}
b_{0}+\mathrm{K}_{j=0}^{n} \frac{a_{j}}{b_{j}}+\frac{w}{1}=b_{0}+T^{n}(w) \tag{111}
\end{equation*}
$$

where

$$
\begin{equation*}
T(w)=\frac{A}{B+w} \text { and } T^{n}(w)=\underbrace{T \circ T \circ \cdots \circ T}_{n}(w) \tag{112}
\end{equation*}
$$

Linear fractional transformations (LFT)

Definition 7. A linear fractional transformation is a real function of the form

$$
\begin{equation*}
T(w)=\frac{a w+b}{c w+d} \tag{113}
\end{equation*}
$$

with $a d-b c \neq 0$.
If we know what happens to $T \circ T \circ \cdots \circ T(w)$, we might be able to tell more about our case (111), where

$$
\begin{equation*}
T(w)=\frac{A}{B+w} \tag{114}
\end{equation*}
$$

(i.e. $a=0, b=A, c=1, d=B$)

Iterations of LFT's (1)

Suppose T is an arbitrary LFT, $w \in \mathbb{R}$, and suppose a real number x exists such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T^{n}(w)=x \tag{115}
\end{equation*}
$$

Expression (115) implies that $T(x)=x$, because

$$
\begin{align*}
\lim _{n \rightarrow \infty} T^{n}(w) & =x \tag{116}\\
T\left(\lim _{n \rightarrow \infty} T^{n}(w)\right) & =x \tag{117}\\
T(x) & =x \tag{118}
\end{align*}
$$

If T is not the identity function, there are at most 2 fixed points x such that $T(x)=x$.

Iterations of LFT's (2)

If $T=\frac{a w+b}{c w+d}$ is a LFT with (complex) fixed points ${ }^{\sqrt{a}} x$ and y.

- If $x=y$ then $\left(T^{n}(w)\right)_{n}$ converges and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T^{n}(w)=x \quad \text { for all } w \in \mathbb{C} \tag{119}
\end{equation*}
$$

- If $x \neq y$ and

$$
\begin{align*}
|c x+d| & =|c y+d| & & \text { if } c \neq 0 \tag{120}\\
|a| & =|d| & & \text { if } c=0 \tag{121}
\end{align*}
$$

then $\left(T^{n}(w)\right)_{n}$ diverges for all $w \in \mathbb{C} \backslash\{x, y\}$.

[^0]
Iterations of LFT's (3)

- If $x \neq y$ and

$$
\begin{array}{rlrl}
|c x+d| & >|c y+d| & & \text { if } c \neq 0 \\
|a| \neq|d| & & \text { if } c=0 \tag{123}
\end{array}
$$

then $\left(T^{n}(w)\right)_{n}$ converges and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T^{n}(w)=x \quad \text { for all } w \in \mathbb{C} \backslash\{y\} \tag{124}
\end{equation*}
$$

Example

For the continued fraction

$$
\begin{equation*}
f=1+\varliminf_{j=1}^{\infty} \frac{1}{2} \tag{125}
\end{equation*}
$$

we have that

$$
\begin{equation*}
T=\frac{1}{2+w} \tag{126}
\end{equation*}
$$

which has fixed points $x=-1+\sqrt{2}$ and $y=-1-\sqrt{2}$. Because $a=0, b=1, c=1, d=2$, we are in case (122).

Example (continued)

$$
\begin{array}{rlrl}
\lim _{n \rightarrow \infty} K_{j=1}^{n} \frac{1}{2}+\frac{w}{1} & =\lim _{n \rightarrow \infty} T^{n}(w) & \\
& =-1+\sqrt{2} & & \text { for } w \neq-1-\sqrt{2} \\
1+\lim _{n \rightarrow \infty} K_{j=1}^{n} \frac{1}{2}+\frac{w}{1} & =\sqrt{2} & & \text { for } w \neq-1-\sqrt{2} \tag{129}
\end{array}
$$

[^0]: ${ }^{\text {a }}$ we allow ∞ as fixed point

