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Continued fractions (1)

e =
1
0!

+
1
1!

+
1
2!

+ . . . =
∞∑

j=0

1
j!

(1)

e = 2 +
2

2 +
3

3 +
4

4 + . . .

(2)

= 2 +
∞

K
j=1

j

j
(3)

= 2 +
2
2 +

3
3 +

4
4 + · · ·

(4)
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Continued fractions (2)

Definition 1. A continued fraction is an expression

b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·

(5)

with all aj 6= 0. The aj and bj are called the partial numerators
and the partial denominators respectively. The continued
fraction (5) is denoted as

b0 +
∞

K
j=1

aj

bj
or b0 +

a1

b1 +
a2

b2 +
a3

b3 + · · ·
(6)
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Approximants

Definition 2. The approximants fn of a continued fraction

f = b0 +
∞

K
j=1

aj

bj
f = b0 +

a1

b1 +
a2

b2 +
a3

b3 +
· · · (7)

are defined as follows

fn = b0 +
n

K
j=1

aj

bj
fn = b0 +

a1

b1 +
· · ·

+
an

bn
(8)
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Examples

f = 2 +
2
2 +

3
3 +

4
4 + · · ·

f = e (9)

f0 = 2 f0 = 2 (10)

f1 = 2 +
2
2

f1 = 3 (11)

f2 = 2 +
2
2 +

3
3

f2 =
8
3

= 2.666 . . . (12)

f3 = 2 +
2
2 +

3
3 +

4
4

f3 =
30
11

= 2.718 . . . (13)
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Recurrence relations

Let f = b0 + K∞
j=1

aj

bj
, and define

P−1 = 1 Q−1 = 0 (14)

P0 = b0 Q0 = 1 (15)

Pn = bnPn−1 + anPn−2 Qn = bnQn−1 + anQn−2 (16)

for n ≥ 1. The following holds:

fn =
Pn

Qn
(17)
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Equivalent continued fractions

Definition 3. Two continued fractions f and g are called
equivalent if and only if fj = gj for all j ∈ N.

Example

f = 2 +
2
2 +

3
3 +

4
4 +

5
5 + · · ·

= e (18)

g = 2 +
2
2 +

9 · 3
9 · 3 +

9 · 4
4 +

5
5 + · · ·

= e (19)

f and g are equivalent continued fractions.
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Equivalence transformations (1)

If f = b0 + K∞
j=1

aj

bj
is a continued fraction, and pj 6= 0 for all

j ≥ 1, then the continued fraction

b0 +
p1a1

p1b1 +

∞

K
j=2

pj−1pjaj

pjbj
(20)

is equivalent to f .
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Equivalence transformations (2)

If bj 6= 0 for all j, the continued fractions

b0 +
∞

K
j=1

aj

bj
(21)

and

b0 +
b−1
1 a1

1 +

∞

K
j=2

b−1
j−1b

−1
j aj

1
(22)

are equivalent.

Proof. Use expression (20) with pj = b−1
j .
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Examples

e = 2 +
2
2 +

3
3 +

4
4 + · · ·

(23)

= 2 +
1
1 +

1
2

1 +

1
3

1 + · · ·
(24)

log 2 = 0 +
1
1 +

12

2 +
12

3 +
22

4 +
22

5 +
32

6 + · · ·
(25)

= 0 +
1
1 +

1
2

1 +

1
6

1 +

1
3

1 +

3
10

1 + · · ·
(26)
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Tails of series (1)

e =
1
0!

+
1
1!

+
1
2!

+
1
3!

+
1
4!

+ · · · (27)

=
∞∑

j=0

1
j!

(28)

lim
n→∞

∞∑
j=n

1
j!

= 0 (29)
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Tails of series (2)

log 2 =
1
1
− 1

2
+

1
3
− 1

4
+

1
5
− · · · (30)

=
∞∑

j=1

(−1)j+1

j
(31)

lim
n→∞

∞∑
j=n

(−1)j+1

j
= 0 (32)
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Tails of continued fractions (1)

e = 2 +
2
2 +

3
3 +

4
4 +

5
5 + · · ·

(33)

= 2 +
∞

K
j=1

j

j
(34)

lim
n→∞

∞

K
j=n

j

j
6= 0 (35)

(This can be proven by reductio ad absurdum)
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Tails of continued fractions (2)

log 2 = 0 +
1
1 +

1
2 +

1
3 +

4
4 + · · ·

(36)

= 0 +
1
1 +

∞

K
j=2

b j
2c

2

j
(37)

lim
n→∞

∞

K
j=n

b j
2c

2

j
= ∞ 6= 0 (38)
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Tails of continued fractions (3)

f = b0 +
∞

K
j=1

aj

bj
f = b0 +

a1

b1 +
a2

b2 +
a3

b3 + · · ·
(39)

f (m) =
∞

K
j=m+1

aj

bj
f (m) =

am+1

bm+1 +
am+2

bm+2 + · · ·
(40)

f (m)
n =

m+n

K
j=m+1

aj

bj
f (m)

n =
am+1

bm+1 + · · · +
am+n

bm+n
(41)
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Modified approximants

f = b0 +
∞

K
j=1

aj

bj
f = b0 +

a1

b1 +
a2

b2 +
a3

b3 + · · ·

(42)

Sn(w) = b0 +
n

K
j=1

aj

bj +
w

1
Sn(w) = b0 +

a1

b1 + · · · +
an

bn +
w

1

(43)

Note that Sn(0) = fn and Sn(f (n)) = f .
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From continued fraction to series (1)

f = 2 +
2
2 +

3
3 +

4
4 + · · ·

(44)

f0 = 2 f1 = 3 f2 =
8
3

f3 =
30
11

(45)

f = 2 + 1 − 1
3

+
2
33

+ · · · (46)
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From continued fraction to series (2)

Let f = b0 + K∞
j=0

aj

bj
be a continued fraction, and let Qi be

defined as in (14-16). The following holds:

fn = b0 +
n∑

j=1

(−1)j+1 a1 · · · aj

Qj−1Qj
(47)

Proof. This can be proven using induction and (14-16).

Definition 4. We call

b0 +
∞∑

j=1

(−1)j+1 a1 · · · aj

Qj−1Qj
(48)

the Euler-Minding series associated to f = b0 + K∞
j=1

aj

bj
.
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From series to continued fraction (1)

Given a series
∑∞

j=0 cj , find a continued fraction K∞
j=1

aj

bj
such

that

b0 +
n

K
j=1

aj

bj
=

n∑
j=0

cj (49)

To obtain this, we define the seqence (Cj)j of the series’
approximants:

Cn =
n∑

j=0

cj (50)
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From series to continued fraction (2)

Let

b0 = C0 (51)

a1 = C1 − C0 b1 = 1 (52)

aj =
Cj−1 − Cj

Cj−1 − Cj−2
bj =

Cj − Cj−2

Cj−1 − Cj−2
(53)

for j ≥ 2. Now the following holds:

b0 +
n

K
j=1

aj

bj
= Cn (54)
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Example

π

4
= 1 − 1

3
+

1
5

− 1
7

+ · · · (55)

C0 = 1 C1 =
2
3

C2 =
13
15

C3 =
76
105

(56)

f = 1 −
1
3

1 +

3
5
2
5

+

5
7
2
7

+ · · ·
(57)
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Successive substitution

How to create a continued fraction expansion for a
value/function f?

f = b0 + f (0) (58)

f (0) =
a1

b1 + f (1)
(59)

f (1) =
a2

b2 + f (2)
(60)

· · · (61)
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Example

√
2 = 1 + (

√
2− 1) f (0) =

√
2− 1 (62)

√
2− 1 =

1
2 + (

√
2− 1)

f (1) =
√

2− 1 (63)

√
2 = lim

n→∞

(
1 +

n

K
j=1

1
2

)
(64)

= 1 +
∞

K
j=1

1
2

(65)
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Warning!

−
√

2 = 1 + (−
√

2− 1) f (0) = −
√

2− 1 (66)

−
√

2− 1 =
1

2 + (−
√

2− 1)
f (1) =

√
2− 1 (67)

−
√

2 6= lim
n→∞

(
1 +

n

K
j=1

1
2

)
(68)

but if we modify the approximants

−
√

2 = lim
n→∞

(
1 +

n

K
j=1

1
2 +

−1−
√

2
1

)
(69)
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Exercises

1. Apply an equivalence transformation to the following
continued fraction expansion of

√
2

√
2 = 1 +

1
2 +

1
2 + · · ·

(70)

such that all partial denominators of the transformed
continued fraction equal 1.

2. Calculate (the first terms of) the Euler-Minding series of
the continued fraction (70).
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Correspondence

Definition 5. A continued fraction

f = b0(x) +
∞

K
j=1

aj(x)
bj(x)

(71)

is said to be corresponding to a power series
∑∞

j=0 cjx
j if for

each n ≥ 0
n∑

j=0

cjx
j (72)

matches the first n + 1 terms of the Taylor expansion of fn.
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Method of Viscovatov

For a power series
∑∞

j=0 cjx
j , with cj 6= 0 for all j ≥ 0, define

d00 = 1 (73)

d0k = 0 (k > 1) (74)

d1k = ck (k ≥ 0) (75)

djk = dj−1,0dj−2,k+1 − dj−2,0dj−1,k+1 (j ≥ 2, k ≥ 0) (76)

The following holds:

lim
n→∞

n∑
j=0

cjx
j = lim

n→∞

d10

1 +

n

K
j=1

dj+1,0x

dj0
(77)
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Constructing corresponding continued fractions

using Viscovatov

f(x) =
∞∑

j=0

cjx
j c1 6= 0 (78)

f(x)− c0

x
=

∞∑
j=0

cj+1x
j (79)

=
d10

1 +

∞

K
j=1

dj+1,0x

dj0
(Viscovatov) (80)

f(x) = c0 +
d10x

1 +

∞

K
j=2

dj0x

dj−1,0
(81)

The continued fraction (81) corresponds to the series (78).
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Example (1)

log(1 + x) = 0 + x− x2

2
+

x3

3
− x4

4
+ · · · (82)

log(1 + x)− 0
x

= 1− x

2
+

x2

3
− x3

4
+ · · · (83)

(djk) =



1 0 0 0 0 . . .

1 −1
2

1
3 −1

4 . . . . . .

1
2 −1

3
1
4 . . . . . . . . . . .

1
12 − 1

12 . . . . . . . . . . . . . .

1
18 . . . . . . . . . . . . . . . . . . . .


(84)
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Example (2)

We get

log(1 + x)
x

=
1
1 +

1
2x

1 +

1
12x
1
2

+

1
18x
1
12

+ · · ·
(85)

which leads to

log(1 + x) = 0 +
x

1 +

1
2x

1 +

1
12x
1
2

+

1
18x
1
12

+ · · ·
(86)
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Example (3)

n fn Taylor expansion

1 x
1 0 + x

2 x
1 +

1
2
x

1 0 + x− 1
2x2 + 1

4x3 − · · ·

3 x
1 +

1
2
x

1 +

1
12

x
1
2

0 + x− 1
2x2 + 1

3x3 − 2
9x4 + · · ·
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Approximant evaluation

How to calculate the value of an (unmodified) approximant fn

of f = K∞
j=1

aj

bj
?

Backward evaluation. Define rn = 0, and rj−1 = aj

bj+rj
for

j = 0, . . . , n− 1. Now fn = b0 + r0.

Forward evaluation. Remember e.g. the recurrence relations
(14-16).
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A tridiagonal system

Theorem. The nth approximant of the continued fraction

K∞
j=1

aj

bj
is the first unknown x1,n of the tridiagonal system

b1 −1 0 . . . 0

a2 b2 −1
...

0 a3 b3
. . . 0

...
. . . . . . −1

0 . . . 0 an bn




x1,n

...

xn,n

 =


a1

0
...

0

 (87)
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Illustration

Use Gaussian elimination to transform the system (87) into a
lower triangular matrix:

b1 −1 0

a2 b2 −1

0 a3 b3




x1,n

x2,n

x3,n

 =


a1

0

0

 (88)


b1 + a2

b2+
a3
b3

0 0

a2 b2 + a3
b3

0

0 a3 b3




x1,n

x2,n

x3,n

 =


a1

0

0

 (89)

You can prove the theorem in a similar way using induction.

34



The other way round

If you use Gaussian elimination to convert the system into an
upper triangular matrix, you will find after backsubstitution:

x1,n =
n∑

j=1

(−1)j−1 a1 · · · aj

h2
1 · · ·h2

j−1hj
(90)

with

h1 = b1 and hj = bj +
aj

hj−1
for j ≥ 2 (91)

This leads to the following forward algorithm:

x1,n = x1,n−1 − (−1)n a1 · · · an

h2
1 · · ·h2

n−1hn
(92)
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Link with Euler-Minding

Expression (90) is closely related to the Euler-Minding series of
the continued fraction (48). Sketch of the proof:

• Prove for the sequence (hn)n as defined in (91) that
hj = Qj

Qj−1
for all j > 0. ((Qn)n is defined in (14–16)).

• Then Qj−1Qj = h2
1 · · ·h2

j−1hj
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Function evaluation using continued fractions

The evaluation of F (z) generally takes three steps

z
A−→ z′

G−→ y
P−→ F (z) (93)

A argument reduction

G a function we can easily calculate using a continued fraction
expansion; usually G = F

P ‘post processing’ (depends on both z and y)
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Truncation error

Since we won’t be able to calculate

G(x) = b0 +
∞

K
j=1

aj(x)
bj(x)

(94)

we will approximate G(x) by a modified n’th approximant

Sn(w;x) = b0 +
a1(x)
b1(x) +

a2(x)
b2(x) + · · · +

an(x)
bn(x) +

w

1
(95)

The choice of n can be made

• a priori

• a posteriori
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Error bounding strategy

Approximating G(x) by Sn(w;x) introduces an error ε

Sn(w;x) = G(x) + ε (96)

We want to make sure that |ε| is smaller than some upper
bound, ε (e.g. ε = 2−52). Suppose we can bound ε by some
expression E which depends on parameters p1, p2, . . .

|ε| ≤ E(p1, p2, . . .) (97)

If we choose our parameters p1, p2, . . . such that

E(p1, p2, . . .) ≤ ε (98)

then indeed
|ε| ≤ ε (99)
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Henrici-Pfluger (HP)

Suppose f = b0 + K∞
j=1

aj

1 is a converging continued fraction
with all an > 0. Then for all n ≥ 1 the following holds:

|f − fn| ≤ |fn − fn−1| (100)
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Determining n a posteriori using HP

f =
1
1 +

∞

K
j=2

(j−1)2

4(j−1)2−1

1
→ π

4
= 0.78539816 . . . (101)

n fn |fn − π
4 | |fn − fn−1|

1 1 0.21460 . . . 1

2 0.75 0.035398 . . . 0.25

3 0.79166. . . 0.0062685 . . . 0.041666. . .

4 0.78431. . . 0.0010844 . . . 0.0073529. . .

5 0.7855855. . . 0.00018742 . . . 0.00127186. . .

6 0.785368536. . . 3.23097 . . . · 10−5 0.00021973. . .
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Interval Sequence Theorem (IST)

Suppose f = K∞
j=1

aj

1 . If we can find sequences (`n)n and (rn)n

such that for all n

1. 0 < `n < rn < ∞

2. (1 + rn)`n−1 ≤ an ≤ (1 + `n)rn−1

then we can apply the ‘interval sequence theorem’:

|f − Sn(w)| ≤ (rn − `n)
r0

1 + `n

n−1∏
k=1

rk

1 + rk
(102)

for w ∈ [`n, rn].
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Sufficient conditions for the IST

In general, we can find suitable `n and rn if

• the partial numerators are non-decreasing towards a
positive number.

• the partial numerators are non-increasing towards zero.

• the even partial numerators are non-decreasing towards a
positive number a, and the odd partial numerators are
non-increasing towards a positive number b such that a ≤ b.

• the partial numerators are non-decreasing towards zero.

• the partial numerators are non-decreasing towards infinity.
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Example

f =
1
1 +

∞

K
j=2

(j−1)2

4(j−1)2−1

1
→ π

4
= 0.78539816 . . . (103)

n Sn(w) |f − Sn(w)| expr. (102)

1 0.80599 . . . 0.020592 . . . 0.049945 . . .

2 0.78451 . . . 0.00087954 . . . 0.0022574 . . .

3 0.78546 . . . 6.7121 . . . · 10−5 0.00017928 . . .

4 0.78539 . . . 6.4734 . . . · 10−6 1.7757 . . . · 10−5

5 0.7853988 . . . 7.1024 . . . · 10−7 1.9847 . . . · 10−6

6 0.7853980 . . . 8.4557 . . . · 10−8 2.3953 . . . · 10−7
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Determining n a priori using IST (1)

If
(

rn−`n
1+`n

)
n

and
(

rn
1+rn

)
n

are decreasing sequences, we can

write for ε = |f − Sn(w)|:

ε ≤ (rn − `n)
r0

1 + `n

n−1∏
k=1

rk

1 + rk
(104)

< (rH − `H)
r0

1 + `H

(
H∏

k=1

rk

1 + rk

)(
rH

1 + rH

)n−H

for H < n

(105)

= (rH − `H)
r0

1 + `H

(
H∏

k=1

1
1 + 1

rk

)(
1

1 + 1
rH

)n−H

(106)
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Determining n a priori using IST (2)

To bound the error by ε (e.g. ε ≤ 2−52), it suffices to bound
this expression:

(rH − `H)
r0

1 + `H

(
H∏

k=1

1
1 + 1

rk

)(
1

1 + 1
rH

)n−H

< ε (107)

It follows that

n >
1

log
(
1 + 1

rH

)[log(rH − `H) + log r0 − log(1 + `H)

−

(
H∑

k=1

log
(

1 +
1
rk

))
− log ε + H

]
(108)
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Determining n a priori using IST (3)

f =
1
1 +

∞

K
j=2

(j−1)2

4(j−1)2−1

1
→ π

4
= 0.78539816 . . . (109)

error bound real n est. n

10−1 1 1

10−2 2 2

10−3 2 3

10−4 3 4

10−5 4 5

10−6 5 6
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Excercises

1. If |z| < 1, then arctan(z) =
∑∞

j=0(−1)j z2j+1

2j+1 is a power
series expansion of arctan(z). Calculate the first terms of a
corresponding continued fraction using Viscovatov’s
method.

2. If a continued fraction g is constructed from a continued
fraction f using the equivalence transformation (20), what
is the connection between the tails f (n) and g(n)?

3. What is the limit of the tails of the continued fraction
(25)? Hint: The limit of the tails of (26) equals

√
2−1
2 .
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The problem 1 + K∞
j=1

1
2

Evaluate

1 +
∞

K
j=1

1
2 +

w

1
(110)

for different values of w

n 1 2 3 4

w = 0 1.5 1.4 1.417 1.414

w = 1 1.333 1.429 1.412 1.415

w = −1 2 1.333 1.429 1.412

w = −1 +
√

2
√

2
√

2
√

2
√

2

w = −1−
√

2 −
√

2 −
√

2 −
√

2 −
√

2
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Periodic continued fractions

Definition 6. A continued fraction f = b0 + K∞
j=1

aj

bj
is called

1-periodic if an = A and bn = B for all n ≥ 1.

If n ≥ 1, then a modified n’th approximant of f satisifies

b0 +
n

K
j=0

aj

bj +
w

1
= b0 + Tn(w) (111)

where

T (w) =
A

B + w
and Tn(w) = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸

n

(w) (112)
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Linear fractional transformations (LFT)

Definition 7. A linear fractional transformation is a real
function of the form

T (w) =
aw + b

cw + d
(113)

with ad− bc 6= 0.

If we know what happens to T ◦ T ◦ · · · ◦ T (w), we might be
able to tell more about our case (111), where

T (w) =
A

B + w
(114)

(i.e. a = 0, b = A, c = 1, d = B)
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Iterations of LFT’s (1)

Suppose T is an arbitrary LFT, w ∈ R, and suppose a real
number x exists such that

lim
n→∞

Tn(w) = x (115)

Expression (115) implies that T (x) = x, because

lim
n→∞

Tn(w) = x (116)

T
(

lim
n→∞

Tn(w)
)

= x (117)

T (x) = x (118)

If T is not the identity function, there are at most 2 fixed
points x such that T (x) = x.
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Iterations of LFT’s (2)

If T = aw+b
cw+d is a LFT with (complex) fixed pointsa x and y.

• If x = y then (Tn(w))n converges and

lim
n→∞

Tn(w) = x for all w ∈ C (119)

• If x 6= y and

|cx + d| = |cy + d| if c 6= 0 (120)

|a| = |d| if c = 0 (121)

then (Tn(w))n diverges for all w ∈ C \ {x, y}.

awe allow ∞ as fixed point
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Iterations of LFT’s (3)

• If x 6= y and

|cx + d| > |cy + d| if c 6= 0 (122)

|a| 6= |d| if c = 0 (123)

then (Tn(w))n converges and

lim
n→∞

Tn(w) = x for all w ∈ C \ {y} (124)
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Example

For the continued fraction

f = 1 +
∞

K
j=1

1
2

(125)

we have that

T =
1

2 + w
(126)

which has fixed points x = −1 +
√

2 and y = −1−
√

2. Because
a = 0, b = 1, c = 1, d = 2, we are in case (122).
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Example (continued)

lim
n→∞

n

K
j=1

1
2 +

w

1
= lim

n→∞
Tn(w) (127)

= −1 +
√

2 for w 6= −1−
√

2 (128)

1 + lim
n→∞

n

K
j=1

1
2 +

w

1
=
√

2 for w 6= −1−
√

2 (129)
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