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1 The calculation of log 2

1.1 Series

To calculate log 2, we will use an expression of Sebah and Gourdon[1].
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1.2 Absolute truncation error

Lemma 1. Suppose we want to approximate log 2 by
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The absolute truncation error E = | log 2− l2| is bounded by
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Proof. From (1) and (2), we can bound the absolute truncation error E as
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follows:
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1.3 Reliable computation of log 2

Suppose we want to calculate log 2 such that the relative truncation error ε
is bounded by |ε| ≤ |ε|. If we choose the approximant T such that
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log 2 ≤ |ε| (9)

then we have

|ε| = |E| log 2 ≤ 6
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log 2 ≤ |ε| (10)

which is what we need. In order to satisfy (9), it is necessary that

T ≥
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(
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)
− log |ε|

log 8
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For the implementation, we will calculate an upperbound of T using interval
arithmetic.
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