Some implementation details

Johan Vervloet

October 3, 2003

1 The calculation of $\log 2$

1.1 Series

To calculate $\log 2$, we will use an expression of Sebah and Gourdon[1].

$$
\begin{equation*}
\log 2=\frac{3}{4}\left(1+\sum_{k=1}^{\infty} \prod_{\ell=1}^{k} \frac{-\ell}{8 \ell+4}\right) \tag{1}
\end{equation*}
$$

1.2 Absolute truncation error

Lemma 1. Suppose we want to approximate $\log 2$ by

$$
\begin{equation*}
l_{2}=\frac{3}{4}\left(1+\sum_{k=1}^{T} \prod_{\ell=1}^{k} \frac{-\ell}{8 \ell+4}\right) \tag{2}
\end{equation*}
$$

The absolute truncation error $E=\left|\log 2-l_{2}\right|$ is bounded by

$$
\begin{equation*}
E \leq \frac{6}{7}\left(\frac{1}{8}\right)^{T+1} \tag{3}
\end{equation*}
$$

Proof. From (1) and (2), we can bound the absolute truncation error E as
follows:

$$
\begin{align*}
|E| & =\left|\frac{3}{4} \sum_{k=T+1}^{\infty} \prod_{\ell=1}^{k} \frac{-\ell}{8 \ell+4}\right| \tag{4}\\
& =\frac{3}{4}\left|\prod_{\ell=1}^{T+1} \frac{-\ell}{8 \ell+4}\right|\left|\sum_{k=T+1}^{\infty} \prod_{\ell=T+2}^{k} \frac{-\ell}{8 \ell+4}\right| \tag{5}\\
& <\frac{3}{4} \prod_{\ell=1}^{T+1} \frac{1}{8} \sum_{k=T+1}^{\infty} \prod_{\ell=T+2}^{k} \frac{1}{8} \tag{6}\\
& <\frac{3}{4}\left(\frac{1}{8}\right)^{T+1} \sum_{k=T+1}^{\infty}\left(\frac{1}{8}\right)^{k-T-1} \tag{7}\\
& =\frac{3}{4}\left(\frac{1}{8}\right)^{T+1} \frac{8}{7}=\frac{6}{7}\left(\frac{1}{8}\right)^{T+1} \tag{8}
\end{align*}
$$

1.3 Reliable computation of $\log 2$

Suppose we want to calculate $\log 2$ such that the relative truncation error ε is bounded by $|\varepsilon| \leq|\bar{\varepsilon}|$. If we choose the approximant T such that

$$
\begin{equation*}
\frac{6}{7}\left(\frac{1}{8}\right)^{T+1} \log 2 \leq|\bar{\varepsilon}| \tag{9}
\end{equation*}
$$

then we have

$$
\begin{equation*}
|\varepsilon|=|E| \log 2 \leq \frac{6}{7}\left(\frac{1}{8}\right)^{T+1} \log 2 \leq|\bar{\varepsilon}| \tag{10}
\end{equation*}
$$

which is what we need. In order to satisfy (9), it is necessary that

$$
\begin{equation*}
T \geq \frac{\log \left(\frac{6}{7} \log 2\right)-\log |\bar{\varepsilon}|}{\log 8}-1 \tag{11}
\end{equation*}
$$

For the implementation, we will calculate an upperbound of T using interval arithmetic.

References

[1] Pascal Sebah and Xavier Gourdon. The logarithmic constant $\log (2)$. http://numbers.computation.free.fr/Constants/Log2/log2.html, september 2001.

