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Outline

Reliable function evaluation using continued fraction expansions

• Reliable evaluation

• Steps of function evaluation

• Continued fractions vs power series

• Continued fractions: truncation error

• The ‘real life example’

• Things I did not tell you
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Reliable evaluation

• Almost all computer calculations are erroneous

• ‘If I ask for t correct digits, I should get t correct digits.’

– Correct: error at most 1 ULP

– Example: for t = 5, the calculated result for
√

2 = 1.4142135623731 . . .

should be in

[1.4141135623731, 1.4143135623731]

Correct results:

y = 1.4142

y = 1.4143
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Mathematical models

z // mathematical
model F

// F(z) ≈ f(z)

• example:

f(z) =
√

z

F(z) =
3

8
+

3

4
z −

1

8
z2

• only an approximation of f(z) (approximation error)

• only useful on a restricted domain, e.g. [1, 1.25]
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The function f(z) =
√

z and its model F
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Three steps of function evaluation

y =
√

1.25 · 106 = 1.1180339887 . . .

1. Argument reduction
√

1.25 · 106 =
√

1.25 · 103

2. Mathematical model

√
1.25 ≈ 3

8
+

3

4
1.25 −

1

8
1.252

=
143

128
= 1.1171875

3. ‘Back reduction’
√

1.25 · 106 ≈ 1.1171875 · 103
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Mathematical models

• Polynomial approximation.

√
z ≈ 3

8
+

3

4
z −

1

8
z2 z ∈ [0.5, 1.25]

• Power series expansion.

√
z + 1 = 1 +

1

2
z −

1

8
z2 +

1

16
z3 − · · · |z| < 1

• Continued fraction expansion.

√
z + 1 = 1 +

z

2 +
z

2 +
z

2 + · · ·

z > −1
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Power series

A power series is an expression of the form

S(z) = b0 + b1z + b2z
2 + . . .

=

∞∑
k=0

bkzk

Example:

S(z) = 1 +
1

2
z −

1

8
z2 +

1

16
z3 − · · ·
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Convergents of power series

The convergents Sn(z) of a power series

S(z) = b0 + b1z + b2z
2 + · · · S(z) =

∞∑
k=0

bkzk

are defined as

Sn(z) = b0 + b1z + · · ·+ bnzn Sn(z) =

n∑
k=0

bkzk

9



Reliable function evaluation October 22, 2004

Examples

S(z) = 1 +
1

2
z −

1

8
z2 +

1

16
z3 − · · ·

S0(0.25) = 1 S0(0.25) = 1

S1(0.25) = 1 +
1

2
0.25 S1(0.25) = 1.125

S2(0.25) = 1 +
1

2
0.25 −

1

8
0.252 S2(0.25) = 1.1171875

lim
n→∞ Sn(0.25) =

√
1.25 S(0.25) = 1.11803398874 . . .

for |z| < 1, it is the case that S(z) =
√

1 + z
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Continued fractions (CF)

A continued fraction is an expression

b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·

with all aj /= 0. The aj and bj are called the partial numerators

and the partial denominators respectively. The continued fraction

above is denoted as

b0 +
∞
K
j=1

aj

bj
or b0 +

a1

b1 +

a2

b2 +

a3

b3 + · · ·
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Convergents of a continued fraction

The convergents Fn of a continued fraction

F = b0 +
∞
K
j=1

aj

bj
F = b0 +

a1

b1 +

a2

b2 +

a3

b3 + · · ·

are defined as follows

Fn = b0 +
n

K
j=1

aj

bj
Fn = b0 +

a1

b1 + · · · +

an

bn
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Examples

F(z) = 1 +
z

2 +

z

2 +

z

2 · · ·

F0(0.25) = 1 F0(0.25) = 1

F1(0.25) = 1 +
0.25

2
F1(0.25) = 1.125

F2(0.25) = 1 +
0.25

2 +

0.25

2
F2(0.25) = 1.1176470588235 . . .

lim
n→∞ Fn(0.25) =

√
1.25 F(0.25) = 1.1180339887 . . .

for z > −1, it is the case that S(z) =
√

1 + z

13



Reliable function evaluation October 22, 2004

Tails of a continued fraction

The tails F(m) of a continued fraction

F = b0 +
∞
K
j=1

aj

bj
F = b0 +

a1

b1 +

a2

b2 +

a3

b3 + · · ·

are defined as follows

F(m) =
∞
K

j=m+1

aj

bj
F(m) =

am+1

bm+1 +

am+2

bm+2 + · · ·
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Example

F(z) = 1 +
z

2 +

z

2 +

z

2 · · ·
F(z) =

√
z + 1 z > −1

F(m)(z) =
√

z + 1 − 1
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Modified convergents

F(z) = b0 +
∞
K
j=1

aj(z)

bj

Fn(z;w) = b0 +
n

K
j=1

aj(z)

bj +

w

1

F(z) = b0 +
a1(z)

b1 +

a2(z)

b2 +

a3(z)

b3 + · · ·

Fn(z;w) = b0 +
a1(z)

b1 + · · · +

an(z)

bn +

w

1

Note that Fn(z; 0) = Fn(z) and Fn(z;F(n)(z)) = F(z).
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Examples

F(z) = 1 +
z

2 +

z

2 +

z

2 · · ·

F0(0.25) = 1 F0(0.25; 0.12) = 1.12

F1(0.25) = 1.125 F1(0.25; 0.12) = 1.11792452830 . . .

F2(0.25) = 1.1176470588235 . . . F2(0.25; 0.12) = 1.118040089 . . .

F(0.25) = 1.1180339887 . . .
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CF vs PS. What’s the difference?

F(z) = b0 +
a1

b1 +

a2

b2 +

a3

b3 + · · ·
= b0 + a1/(b1 + a2/(b2 + a3/(b3 + · · · ))︸ ︷︷ ︸

F(1)(z)

)

︸ ︷︷ ︸
F(0)(z)

S(z) = b0 + b1z + b2z
2 + b3z

3 + · · ·
= b0 + z · (b1 + z · (b2 + z · (b3 + · · · ))︸ ︷︷ ︸

S(1)(z)

)

︸ ︷︷ ︸
S(0)(z)
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Tails of power series?

The tails S(m)(z) of a power series

S(z) = b0 + b1z + b2z
2 + · · · S(z) =

∞∑
k=0

bkzk

are defined as

S(m)(z) = bm+1z + bm+2z
2 + · · · S(m)(z) =

∞∑
k=m+1

bkzk−m

Note that

S(z) = Sn(z) + S(n)(z)xn
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Example

S(z) = 1 +
1

2
z −

1

8
z2 +

1

16
z3 − · · ·

=
√

1 + z

S(0)(0.25) = 0.1180339887 . . .

S(1)(0.25) = −0.02786404500042 . . .

S(2)(0.25) = 0.0135438199983 . . .

lim
m→∞ S(m)(0.25) = 0

20



Reliable function evaluation October 22, 2004

Another example

S(z) = 1 + z + z2 + · · ·

=
1

1 − z

Since all bn = 1, it follows that for all n

S(n)(z) = z + z2 + z3 + · · ·

=
z

1 − z
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Forward and backward evaluation

• Forward evaluation

1. Calculate convergents C0(z),C1(z), . . . ,Cn(z)

2. Use the difference between Cn−1(z) and Cn(z) to

determine a stop criterium

Numerically less stable

• Backward evaluation

1. Find an n in advance such that Cn(z) is reliable

2. Calculate C
(n−1)
1 (z),C

(n−2)
2 (z), . . . ,C

(0)
n (z)

3. Cn(z) = b0 + C
(0)
n (z)

Step (1) is not trivial
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Truncation error of a CF’s convergent

• A posteriori (forward evaluation)

– Henrici-Pflüger

• A priori (backward evaluation)

– Gragg-Warner (unmodified convergent)

– Interval Sequence Theorem (modified convergent)
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Henrici-Pfluger (HP)

Suppose F(z) = b0 +K∞
j=1

aj(z)
1

is a converging continued fraction

with an(z) > 0 for all n > 1. The following holds for n > 1:

|F(z) − Fn(z; 0)| 6 |Fn(z) − Fn−1(z)|
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Example

F(z) = 1 +
z

2 +

z

2 +

z

2 + · · ·

= 1 +
1
2
z

1 +

1
4
z

1 +

1
4
z

1 + · · ·

n Fn(0.25) t

0 1 –

1 1.125 1

2 1.117647. . . 3

3 1.1180555. . . 4

4 1.118032786885. . . 5
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Gragg-Warner (GW)

Suppose F(z) = b0 +K∞
j=1

aj(z)
1

is a converging continued fraction

with an(z) > 0 for all n > 1. The following holds for n > 2:

|F(z) − Fn(z; 0)| 6 2|a1(z)|

n∏
k=2

√
1 + 4|ak(z)| − 1√
1 + 4|ak(z)| + 1
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Example

F(z) = 1 +
1
2
z

1 +

1
4
z

1 +

1
4
z

1 + · · ·

n Fn(0.25) t (HP) t (GW)

0 1 – –

1 1.125 1 –

2 1.117647. . . 3 2

3 1.1180555. . . 4 4

4 1.118032786885. . . 5 5

5 1.1180340557. . . 6 6

6 1.1180339850. . . 8 7
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Interval Sequence Theorem (IST)

Suppose F(z) = K∞
j=1

aj(z)
1

. If we can find sequences (`n)n and

(rn)n such that for all n

1. 0 < `n < rn < ∞
2. (1 + rn)`n−1 6 an(z) 6 (1 + `n)rn−1

then we can apply the ‘interval sequence theorem’:

|F(z) − Fn(z;w)| 6 (rn − `n)
r0

1 + `n

n−1∏
k=1

rk

1 + rk

for w ∈ [`n, rn].
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Example

F(z) = 1 +
1
2
z

1 +

1
4
z

1 +

1
4
z

1 + · · ·

`0 =
√

2 − 1 − 2−50, r0 =
√

2 − 1 + 2−50, `n =
`0

2
, rn =

r0

2
,n > 1

n Fn(0.25) t (IST)

1 1.118033988749894845177372784. . . 18

2 1.118033988749894848373287691. . . 19

3 1.1180339887498948481951854578. . . 20

4 1.1180339887498948482051107551. . . 21

5 1.11803398874989484820455763726. . . 23

6 1.11803398874989484820458846146. . . 24
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Sufficient conditions for the IST

In general, we can find suitable `n and rn if

• the partial numerators are non-decreasing towards a positive

number.

• the partial numerators are non-increasing towards zero.

• the even partial numerators are non-decreasing towards a

positive number a, and the odd partial numerators are

non-increasing towards a positive number b such that a 6 b.

• the partial numerators are non-decreasing towards zero.

• the partial numerators are non-decreasing towards infinity.
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Real life example: log(z + 1)

F(z) = log(z + 1) =
∞
K
n=1

an(z)

1

a1(z) = z (1)

an(z) =
nz

4(n − 1)
n even (2)

an(z) =
(n − 1)z

4n
n > 1, n odd (3)

F ′(z) = F(1)(z) has even partial numerators increasing towards 1
4

and odd partial numerators decreasing towards 1
4
.
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Steps for calculating log(z + 1)

1. From target precision t, calculate a working precision s such

that the rounding errors of the following steps will be small

enough.

2. Reduce the argument to [0,β0.5n
− 1], using

log(aβn) = log(a) + n log(β)

3. Use the IST ‘the other way round’, to calculate a convergent

n which ensures that the truncation error will be small enough.

4. Evaluate the continued fraction F ′(z).

5. Calculate log(z + 1) from F ′(z).
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Number of convergents to calculate

z =
√

2 − 1

t unm hp gw mod ist smod sist ps

50 11 12 13 10 11 3 3 37

100 23 24 24 21 22 11 12 75

150 34 35 35 32 33 22 23 114

200 45 46 46 43 44 33 34 153
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I did not tell you about

• Rounding error

• Multi-base arithmetic

• The C++ implementation
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A final word of advice. . .

Als uw ketting gebroken is, dan moet je te voet verder.
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