Error estimation for the implementation of $\log _{10}$ in Arithmos

Johan Vervloet

November 15, 2004

Theorem 1. If a machine implementation for $\log _{10} z$ is based on this formula:

$$
\begin{equation*}
\log _{10} z=\frac{\log z}{\log 5+\log 2} \tag{1}
\end{equation*}
$$

and the relative errors in the implementation of the logarithm, the addition and the division are bounded by $\frac{\epsilon}{12}$, where $\epsilon<2(\sqrt{13}-3)$, then the relative error introduced by the implementation of $\log _{10} z$ is bounded by ϵ.

Proof. The machine implementation of $\log _{10} z$ returns

$$
\begin{equation*}
f(z)=\frac{(\log z)\left(1+\epsilon_{1}\right)\left(1+\epsilon_{5}\right)}{\left((\log 2)\left(1+\epsilon_{2}\right)+(\log 5)\left(1+\epsilon_{3}\right)\right)\left(1+\epsilon_{4}\right)} \tag{2}
\end{equation*}
$$

where $\epsilon_{1}, \epsilon_{2}$ and ϵ_{3} are relative errors caused by the implementation of \log, ϵ_{4} the relative error caused by the implementation of the addition, and $\epsilon 5$ the relative error caused by the implementation of the division.

Because

$$
\begin{equation*}
(\log 2)\left(1+\epsilon_{2}\right)+(\log 5)\left(1+\epsilon_{3}\right)=(\log 10)\left(1+\frac{(\log 2) \epsilon_{2}+(\log 5) \epsilon_{3}}{\log 10}\right) \tag{3}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
(\log 2)\left(1+\epsilon_{2}\right)+(\log 5)\left(1+\epsilon_{3}\right)=(\log 10)\left(1+\delta_{1}\right) \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
\left|\delta_{1}\right| \leq \max \left(\left|\epsilon_{2}\right|,\left|\epsilon_{3}\right|\right) \tag{5}
\end{equation*}
$$

So we can rewrite expression (2) as

$$
\begin{equation*}
f(z)=\frac{(\log z)\left(1+\epsilon_{1}\right)\left(1+\epsilon_{5}\right)}{(\log 10)\left(1+\delta_{1}\right)\left(1+\epsilon_{4}\right)} \tag{6}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
f(z)=\frac{(\log z)\left(1+\epsilon_{1}\right)\left(1+\epsilon_{5}\right)}{(\log 10)\left(1+\delta_{2}\right)} \tag{7}
\end{equation*}
$$

where, assuming that $\left|\delta_{1}\right|,\left|\epsilon_{4}\right|<1$,

$$
\begin{equation*}
\left|\delta_{2}\right| \leq 3 \max \left(\left|\delta_{1}\right|,\left|\epsilon_{4}\right|\right) \tag{8}
\end{equation*}
$$

Because

$$
\begin{equation*}
\frac{1}{1+\delta_{2}}=\sum_{k=0}^{\infty}\left(-\delta_{2}\right)^{k}=\left(1+\delta_{3}\right) \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
\left|\delta_{3}\right| \leq\left|\delta_{2}\right| \tag{10}
\end{equation*}
$$

we can simplify expression (6) as

$$
\begin{equation*}
f(z)=\left(\log _{10} z\right)\left(1+\epsilon_{1}\right)\left(1+\epsilon_{5}\right)\left(1+\delta_{3}\right) \tag{11}
\end{equation*}
$$

such that

$$
\begin{equation*}
f(z)=\left(\log _{10} z\right)\left(1+\delta_{4}\right) \tag{12}
\end{equation*}
$$

where, assuming that $\left|\epsilon_{1}\right|,\left|\epsilon_{5}\right|,\left|\delta_{3}\right| \leq \frac{\sqrt{13}-3}{2}$,

$$
\begin{equation*}
\left|\delta_{4}\right| \leq 4 \max \left(\left|\epsilon_{1}\right|,\left|\epsilon_{5}\right|,\left|\delta_{3}\right|\right) \tag{13}
\end{equation*}
$$

If now $\left|\epsilon_{1}\right|, \ldots,\left|\epsilon_{5}\right| \leq\left|\frac{\bar{\epsilon}}{12}\right|$, then

$$
\begin{array}{rlrl}
\left|\delta_{1}\right| & \leq\left|\frac{\bar{\epsilon}}{12}\right| & & \text { because of }(5) \\
\left|\delta_{2}\right| & \leq\left|\frac{\bar{\epsilon}}{4}\right| & & \text { because of }(8) \\
\left|\delta_{3}\right| & \leq\left|\frac{\bar{\epsilon}}{4}\right| & & \text { because of }(10) \\
\left|\delta_{4}\right| & \leq|\bar{\epsilon}| & \tag{17}
\end{array}
$$

which, in combination with equation (12), concludes the proof.

